Programming from metaphorisms

Institute of Cybernetics

$$
\text { Tallinn — April 28th, } 2016
$$

J.N. Oliveira

InESC TEC \& University of Minho

Metaphorism < metaphor

Cognitive linguistics versus Chomskian generative linguistics

- Information science is based on Chomskian generative grammars
- Semantics is a "quotient" of syntax
- Cognitive linguistics has emerged meanwhile
- Emphasis on conceptual metaphors - the basic building block of semantics
- Metaphors we live by (Lakoff and Johnson, 1980).

Metaphors we live by

A cognitive metaphor is a device whereby the meaning of an idea (concept) is carried by another, e.g.

She counterattacked with a winning argument

- the underlying metaphor is ARGUMENT IS WAR.

Metaphor TIME IS MONEYunderlies everyday phrases such as e.g.:
You are wasting my time
Invest your time in something else.

Metaphoric language

Attributed to Mark Twain:
"Politicians and diapers should be changed often and for the same reason".
('No jobs for the boys' in metaphorical form.)
Metaphor structure, where $P=$ politician and $D=$ diaper:

dirty $($ chng $x)=$ False induces chngt' over P, and so on.

Formal metaphors

In his Philosophy of Rhetoric, Richards (1936) finds three kernel ingredients in a metaphor, namely

- a tenor (e.g. politicians)
- a vehicle (e.g. diapers)
- an implicit, shared attribute.

Formally, we have a "cospan"

where functions $f: \mathbf{T} \rightarrow A$ and $g: \mathbf{V} \rightarrow A$ extract the common attribute (A) from tenor (\mathbf{T}) and vehicle (\mathbf{V}).

Formal metaphors

HASLab
wescrice

The cognitive, æsthetic, or witty power of a metaphor is obtained by hiding A, thereby establishing a composite, binary relationship

$$
\mathbf{T} \stackrel{f^{\circ} \cdot g}{\leftarrow} \mathbf{V}
$$

— the "T is V" metaphor — which leaves A implicit.

Remarks on notation:

- $x f^{\circ} y$ means the same as $y f x$, that is $y=f x$.
- In general, $x R^{\circ}$ y asserts the same as y R x.
- Relational composition:

$$
y(R \cdot S) x \quad \text { iff }\langle\exists z:: \text { y } R z \wedge z S x\rangle
$$

Metaphors in science

Scientific expression is inherently metaphoric.
Such metaphors convey the meaning of a complex, new concept in terms of a simpler, familiar one:

The cell envelope ... proteins behave ... colonies of bacteria ... electron cloud ...

Mathematics terminology inherently metaphoric too, cf. e.g.

- polynomial functor ...
- vector addition ...
(algebraic structure sharing) and so is computing terminology in general:
- ... stack, queue, pipe, memory, driver, ...

"Metaphoric" software design?

HASLab

Text formatting example:

Only this? No:

Formatting consists in (re)introducing white space evenly throughout the output text lines,

$$
\begin{equation*}
\text { Format }=\left((\gg \text { words })^{\circ} \cdot \text { words }\right) \upharpoonright R \tag{2}
\end{equation*}
$$

as specified by some convenient optimization criterion R ($\upharpoonright \cdot$ operator to be explained soon.)

Metaphorical specifications

Problem statements are often metaphorical in a formal sense -input-output relations in which

- some hidden information is preserved (the invariant part)
- some form of optimization takes place (the variant part).

Invariant part:

$$
\begin{array}{lc}
& y\left(f^{\circ} \cdot g\right) x \\
\Leftrightarrow & \{\text { composition and converse }\} \\
& \langle\exists a: a f y: a g x\rangle \\
\Leftrightarrow & \quad\{\text { functions } f \text { and } g\} \\
& \langle\exists a: a=f y: a=g x\rangle \\
\Leftrightarrow & \quad\{\text { one-point quantification }\} \\
& (f y)=(g x)
\end{array}
$$

Metaphorical specifications

VARIANT PART:

$$
\begin{array}{cc}
& y(S \upharpoonright R) x \\
\Leftrightarrow & \{\text { check definition (18) below }\} \\
& y\left(S \cap R / S^{\circ}\right) x \\
\Leftrightarrow & \{\text { meet }\} \\
& y S x \wedge y\left(R / S^{\circ}\right) x \\
\Leftrightarrow & \quad\{\text { division (more about this below) }\} \\
& y S x \wedge\left\langle\forall y^{\prime}: y^{\prime} S x: y R y^{\prime}\right\rangle x
\end{array}
$$

Altogether:
According to criteria R, y is (among) the best outputs of S for input x.

Metaphorical specifications

Invariant + VARIANT parts:

$$
\begin{equation*}
M=\left(f^{\circ} \cdot g\right) \upharpoonright R \tag{3}
\end{equation*}
$$

Meaning of $y M x$:

- $f y=g x$ (the information preserved);
- output y is "best" among all other y^{\prime} such that $f y^{\prime}=f x$ (this is the optimization).

Metaphorisms

Term "metaphorism" refers to metaphors involving tree-like, inductive types, e.g.

- Source code refactoring - the meaning of the source program is preserved, the target code being better styled wrt. coding conventions and best practices.
- Change of base (numeric representation) - the numbers represented by the source and the result are the same, cf. the representation changers of Hutton and Meijer (1996).
- Sorting - the bag (multiset) of elements of the source list is preserved, the optimization consisting in obtaining an ordered output.
etc

More about (relation) notation

Relation division is for relational composition what whole division is for multiplication of natural numbers, compare property

$$
z \times y \leqslant x \Leftrightarrow z \leqslant x \div y
$$

$-x \div y$ is the largest number that multiplied by y approximates x - with property

$$
\begin{equation*}
Q \cdot S \leqslant R \Leftrightarrow Q \leqslant R / S \tag{4}
\end{equation*}
$$

$-R / S$ is the largest relation that chained with S approximates R.
(Both are Galois connections.)

More about (relation) notation

Moreover, we can define a kind of symmetric division by

$$
\begin{equation*}
\frac{S}{R}=\left(S^{\circ} / R^{\circ}\right)^{\circ} \cap R^{\circ} / S^{\circ} \quad B<\frac{\frac{S}{R}}{<} C \tag{5}
\end{equation*}
$$

Pointwise:

$$
\begin{equation*}
b \frac{S}{R} c \Leftrightarrow\langle\forall a:: \text { a } R b \Leftrightarrow a S c\rangle \tag{6}
\end{equation*}
$$

In the case of functions:

$$
\begin{equation*}
\frac{f}{g}=g^{\circ} \cdot f \tag{7}
\end{equation*}
$$

"Rational" relations

So metaphors are nicely described by "fractions" $\frac{f}{g}$ which, incidentally, share several properties (when paralleled with) rational numbers, e.g.

$$
\begin{align*}
& \left(\frac{f}{g}\right)^{\circ}=\frac{g}{f} \tag{8}\\
& \frac{i d}{g} \cdot \frac{h}{k} \cdot \frac{f}{i d}=\frac{h \cdot f}{k \cdot g} \tag{9}
\end{align*}
$$

Moreover, metaphors are closed by intersection:

$$
\begin{equation*}
\frac{f}{g} \cap \frac{h}{k}=\frac{f \nabla h}{g \nabla k} \tag{10}
\end{equation*}
$$

where $(f \nabla h) x=(f x, h x)$ is the pairing operator.

Predicates and diagonals

As in the POLITICS IS DIRT metaphor, metaphors can involve predicates p, q, \ldots for instance

$$
y \frac{\text { true }}{q} x=q y
$$

where true is the everywhere-true predicate.
Put in another way, we can encode predicates in the form of diagonal metaphors:

$$
\begin{equation*}
p ?=i d \cap \frac{\text { true }}{p} \tag{11}
\end{equation*}
$$

that is,

$$
y(p ?) x \Leftrightarrow(y=x) \wedge(p y)
$$

holds.

Weakest preconditions

More generally,

$$
f \cap \frac{\text { true }}{q}=q ? \cdot f \quad f \cap \frac{p}{\text { true }}=f \cdot p ?
$$

hold. Moreover, equality

$$
f \cap \frac{p}{\text { true }}=\frac{\text { true }}{q} \cap f
$$

expresses a weakest precondition $(p) /$ strongest postcondition (q) relationship.

Another way to write this:

$$
\begin{equation*}
f \cdot p ?=q ? \cdot f \quad \Leftrightarrow \quad p=q \cdot f \tag{12}
\end{equation*}
$$

Divide \& conquer metaphors

Can we derive programs from a given metaphor

$$
\begin{equation*}
M=\frac{f}{g} \upharpoonright R \tag{13}
\end{equation*}
$$

by calculation?
By this law of shrinking

$$
\begin{equation*}
(S \cdot f) \upharpoonright R=(S \upharpoonright R) \cdot f \tag{14}
\end{equation*}
$$

we can shift f out of the metaphor:

$$
\frac{f}{g} \upharpoonright R=\left(\frac{i d}{g} \upharpoonright R\right) \cdot f
$$

This is known as the inverse of a function refinement strategy.

Divide \& conquer metaphors

Divide \& conquer programming calls for an auxiliary structure W between vehicle and tenor,

$$
\mathbf{T} \leftarrow \mathbf{W}<\mathbf{V}
$$

intended to gain control of the "pipeline".
This can be done in two ways.
Assume a surjection $h: \mathbf{W} \rightarrow \mathbf{T}$ on the tenor side, that is, $\rho h=h \cdot h^{\circ}=i d$.

$$
\begin{aligned}
& \text { Range of a function: } \\
& y^{\prime}\left(h \cdot h^{\circ}\right) y \Leftrightarrow\left\langle\exists x:: y^{\prime}=y \wedge y=h x\right\rangle \text {. }
\end{aligned}
$$

Divide \& conquer metaphors

HASLab

Then $h: \mathbf{W} \rightarrow \mathbf{T}$ provides an intermediate representation of the tenor.

As we shall see shortly, the splitting works as follows

$$
\left.\frac{f}{g} \right\rvert\, R
$$

provided one can find a relation X such that $h \cdot X=\frac{f}{g} \upharpoonright R$.
Note how the outer metaphor gives way to an inner metaphor between the vehicle (\mathbf{V}) and the intermediate type (W).

Divide \& conquer metaphors

HASLab

Alternatively, we can imagine surjection h working on the vehicle side, say $h: \mathbf{W} \rightarrow \mathbf{V}$ in

$$
\left.\frac{f}{g} \right\rvert\, R
$$

and try and find relation Y such that $Y \cdot h^{\circ}=\frac{f}{g} \upharpoonright R$.
Note how intermediate type \mathbf{W} acts is representation of \mathbf{T} or \mathbf{V} in, respectively, (15) and (16) - h acts as a typical data refinement abstraction function.

Divide \& conquer metaphors

Let us calculate "conquer" step Y in the first place:

$$
\left.\begin{array}{rl}
& \frac{f}{g} \upharpoonright R \\
= & \{\text { identity of composition \}}
\end{array}\right\} \begin{aligned}
& \left(\frac{f}{g} \upharpoonright R\right) \cdot \text { id } \\
& = \\
& \left\{h \text { assumed to be a surjection, } h \cdot h^{\circ}=i d\right\} \\
& = \\
& \left\{\begin{array}{l}
\left(\frac{f}{g} \upharpoonright R\right) \cdot h \cdot h^{\circ} \\
\{\operatorname{law}(14)\} \\
\left(\frac{f \cdot h}{g} \upharpoonright R\right)
\end{array} h^{\circ}\right.
\end{aligned}
$$

Divide \& conquer metaphors

Altogether:

$$
\begin{equation*}
\frac{f}{g} \upharpoonright R=\left(\frac{f \cdot h}{g} \upharpoonright R\right) \cdot h^{\circ} \quad \text { for } h \text { surjective } \tag{17}
\end{equation*}
$$

In a diagram, completing (16):

Strategy is known by
"Easy Split, Hard Join"
(Howard, 1994), where
"Split" (resp. "Join")
stands for "divide" (resp.
"conquer")

Thus the hard work is deferred to the conquer stage.

Divide \& conquer metaphors

Next we calculate the alternative "Hard Split, Easy Join" strategy. We will need

$$
\begin{equation*}
S \upharpoonright R=S \cap R / S^{\circ} \tag{18}
\end{equation*}
$$

to solve equation

for X (next slide).

"Hard Split, Easy Join"

$$
\begin{aligned}
& \begin{array}{l}
\frac{f}{g} \upharpoonright R \\
= \\
\frac{f}{g} \cap R / \frac{g}{f}
\end{array} \\
&=\begin{array}{l}
\{(18) ; \text { converse of a metaphor (8) }\}
\end{array} \\
& h \cdot h^{\circ} \cdot\left(\frac{f}{g} \cap R / \frac{g}{f}\right) \\
&=\left\{\text { injective } h^{\circ} \text { distributes by } \cap\right\} \\
& h \cdot\left(\frac{f}{g \cdot h} \cap h^{\circ} \cdot R / \frac{g}{f}\right)
\end{aligned}
$$

(Thumb rule: the converse of a function is always injective.)

"Hard Split, Easy Join"

We record property

$$
\begin{equation*}
R / \frac{g}{f}=(R / g) \cdot f \tag{19}
\end{equation*}
$$

which follows from (4) and carry on:

$$
=\begin{gathered}
h \cdot\left(\frac{f}{g \cdot h} \cap h^{\circ} \cdot R / \frac{g}{f}\right) \\
=\begin{array}{c}
\{\text { above ; shunting }\}
\end{array} \\
h \cdot \underbrace{\left(\frac{f}{g \cdot h} \cap h^{\circ} \cdot(R / g) \cdot f\right)}_{X}
\end{gathered}
$$

Clearly, the divide step X is now where most of the work is done.

"Hard Split, Easy Join"

The choice of intermediate w by X mirrors where the optimization has moved to, check this in the pointwise version:

$$
\begin{aligned}
& w X v \Leftrightarrow \\
& \quad \text { let } a=f v \in \\
& \quad(g(h w)=a) \wedge\langle\forall t: a=g t:(h w) R t\rangle
\end{aligned}
$$

In words:
Given vehicle v, X will select those w that represent tenors ($h \mathrm{w}$) with the same attribute (a) as vehicle v, and that are best among all other tenors t exhibiting the same attribute a.

Altogether:

$$
\begin{equation*}
\frac{f}{g} \upharpoonright R=h \cdot\left(\frac{f}{g \cdot h} \cap h^{\circ} \cdot(R / g) \cdot f\right) \quad \text { for } h \text { surjective } \tag{20}
\end{equation*}
$$

Post-conditioned metaphors

Finally consider the following pattern of metaphor shrinking

$$
\begin{equation*}
\frac{f}{g} \upharpoonright \frac{\text { true }}{q} \tag{21}
\end{equation*}
$$

indicating that only outputs satisfying q are regarded as good enough.

Thus q acts as a post-condition on $\frac{f}{g}$.
Example of (21):

$$
\text { Sort }=\frac{b a g}{b a g} \upharpoonright \frac{\text { true }}{\text { ordered }}
$$

In this metaphor, function bag extracts the bag (multiset) of elements of a finite list and predicate ordered checks whether it is ordered.

Post-conditioned metaphors

HASLab

The following equality shows why these metaphors are referred to as post-conditioned:

$$
\frac{f}{g} \upharpoonright \frac{\text { true }}{q}=q ? \cdot \frac{f}{g}
$$

Example (sorting):

$$
\begin{equation*}
\text { Sort }=\text { ordered } ? \cdot \text { Perm } \quad \text { where } \quad \text { Perm }=\frac{b a g}{b a g} \tag{22}
\end{equation*}
$$

where y Perm x means that y is a permutation of x.
For this special case, "Hard Split, Easy Join" (20) boils down to

$$
\begin{equation*}
q ? \cdot \frac{f}{g}=h \cdot p ? \cdot \frac{f}{g \cdot h} \quad \text { for } h \text { surjective and } p=q \cdot h \tag{23}
\end{equation*}
$$

see next slide.

Post-conditioned metaphors

$$
\begin{aligned}
& q ? \cdot i d \cdot \frac{f}{g} \\
= & \{h \text { assumed surjective }\} \\
= & q ? \cdot h \cdot h^{\circ} \cdot \frac{f}{g} \\
= & \{\text { switch to wP } p(12), \text { cf. } q ? \cdot h=h \cdot p ?\} \\
& h \cdot \underbrace{p ? \cdot \frac{f}{g \cdot h}}_{X}
\end{aligned}
$$

The counterpart of (17) is even more immediate:

$$
\begin{equation*}
q ? \cdot \frac{f}{g}=\underbrace{q ? \cdot \frac{f \cdot h}{g}}_{Y} \cdot h^{\circ} \quad \text { for } h \text { surjective } \tag{24}
\end{equation*}
$$

Metaphorisms

Metaphorisms are metaphors over inductive types.
The tree-like structure of the intermediate type \mathbf{W} will be central to the derivation of programs from divide \& conquer metaphors.

Eventually, W will disappear, leaving its mark in the algorithmic process only.

This is why this refinement strategy is often known as "changing the virtual data structure" (Swierstra and de Moor, 1993).

Now we know more about the types involved - assuming such initial, term-algebras exist for functors \mathbf{F}, \mathbf{G} and \mathbf{H}, respectively.

$$
\begin{aligned}
& T \stackrel{i n_{T}}{<} F T \\
& \mathbf{W} \stackrel{\mathrm{in}_{\mathrm{w}}}{\rightleftarrows} \text { G W } \\
& \mathbf{V} \stackrel{i n V}{\rightleftarrows} \mathbf{H} \mathbf{V}
\end{aligned}
$$

Initial algebras

Take $\mathbf{T} \stackrel{\mathrm{in}_{\mathbf{T}}}{\lessdot} \mathbf{F} \mathbf{T}$, for instance. The unique \mathbf{F}-homomorphism from the initial $\mathbf{T} \stackrel{i n_{\mathbf{T}}}{{ }^{-}} \mathbf{F} \mathbf{T}$ to any other (relational) algebra $A<{ }^{R} \mathbf{F} A$ is written $(|R|)$

and is termed catamorphism (or fold) over R :

$$
\begin{align*}
X=(|R|) & \Leftrightarrow X \cdot \mathrm{in}_{\mathbf{T}}=R \cdot(\mathbf{F} X) \tag{25}\\
S \cdot(R \mid)=(|Q|) & \Leftrightarrow S \cdot R=Q \cdot \mathbf{F} S \tag{26}\\
(|R|) \cdot \mathrm{in}_{\mathbf{T}} & =R \cdot \mathbf{F}(|R|) \tag{27}
\end{align*}
$$

Sorting example (details)

- $\mathbf{T}=$ finite cons-lists, $\mathrm{in}_{\mathbf{T}}=[$ nil, cons $]$.
- $\mathbf{W}=$ binary leaf trees, $\mathbf{W} \stackrel{\mathrm{in}_{\mathbf{w}}=[\text { leaf,fork }]}{<} \mathbf{F W}$ where $\mathbf{F} f=i d+(f \times f)$.
- bag $=(k \mid)$ - converts finite lists to bags (multisets of elements).
- $h=$ tips $=([$ sing/, conc $] \mid)$ where singl $x=[x]$ and conc $(x, y)=x+y$. (Surjection h lists the leafs of a tree.)
- ordered $=([$ nil , cons $] \cdot(i d+m n ?)))$ where $m n(x, x s)=\left\langle\forall x^{\prime}: x^{\prime} \epsilon_{\mathbf{T}} x s: x^{\prime} \leqslant x\right\rangle, \epsilon_{\mathbf{T}}$ denoting list membership. ${ }^{1}$

[^0]
Result needed (F-congruences)

Say that equivalence relation R is a congruence for algebra $h: \mathbf{F} A \rightarrow A$ of functor \mathbf{F} wherever

$$
\begin{equation*}
h \cdot(\mathbf{F} R) \subseteq R \cdot h \quad \text { i.e. } \quad y(\mathbf{F} R) x \Rightarrow(h y) R(h x) \tag{28}
\end{equation*}
$$

hold. Then this is the same as stating:

$$
\begin{equation*}
R \cdot h=R \cdot h \cdot(\mathbf{F} R) \tag{29}
\end{equation*}
$$

For $h=\mathrm{in}$ initial, (29) is equivalent to:

$$
\begin{equation*}
R=(R \cdot \mathrm{in} \mid) \tag{30}
\end{equation*}
$$

$(29,30)$ useful: inductive equivalence relation generated by a fold is such that the recursive branch F can be added or removed where convenient.

Permutations (example)

For $R=$ Perm (22), for instance, (30) unfolds into

$$
\text { Perm } \cdot \text { in }=\text { Perm } \cdot \text { in } \cdot(F \text { Perm })
$$

whose useful part is

$$
\text { Perm } \cdot \text { cons }=\text { Perm } \cdot \text { cons } \cdot(\text { id } \times \text { Perm })
$$

i.e.

$$
y \operatorname{Perm}(a: x)=\langle\exists z: z \operatorname{Perm} x: y \operatorname{Perm}(a: z)\rangle
$$

written pointwise. In words:
Permuting a sequence with at least one element is the same as adding it to the front of a permutation of the tail and permuting again.

"Easy Split, Hard Join"

Let us use mergesort as example, which relies on leaf trees based on functor $\mathbf{K} f=i d+f^{2}$, as \mathbf{W} is of shape $\mathbf{W}=L+\mathbf{W}^{2}$.

We go back to (24), the instance of (16) which fits the sorting metaphorism:

$$
q ? \cdot \frac{b a g}{b a g}=\underbrace{q ? \cdot \frac{b a g \cdot t i p s}{b a g}}_{Y=(Z)} \cdot \operatorname{tips}^{\circ}
$$

Recall tips $=(|t|)$ where ${ }^{2}$

$$
\begin{aligned}
& t=[\text { sing } /, \text { conc }] \\
& \operatorname{sing} / a=[a] \\
& \operatorname{conc}(x, y)=x+y
\end{aligned}
$$

[^1]
"Easy Split, Hard Join"

Our aim is to calculate Z, the K -algebra which shall control the conquer step:

$$
\begin{aligned}
& (Z \mid)=q ? \cdot \frac{b a g}{b a g} \cdot(|t|) \\
\Leftarrow \quad & \{\text { fusion }(26) ; \text { functor } \mathbf{K}\} \\
& q ? \cdot \frac{b a g}{b a g} \cdot t=Z \cdot(\mathbf{K} q ?) \cdot \mathbf{K} \frac{b a g}{b a g} \\
\Leftarrow \quad & \{(29) ; \text { Leibniz }\} \\
& q ? \cdot \frac{b a g}{b a g} \cdot t=Z \cdot \mathbf{K} q ?
\end{aligned}
$$

(Left pending: $\frac{b a g}{b a g}$ is a K-congruence for algebra t.)

"Easy Split, Hard Join"

Next, we head for a functional implementation $z \subseteq Z$:

$$
\begin{aligned}
& z \cdot \mathbf{K} q ? \subseteq q ? \cdot \frac{b a g}{b a g} \cdot t \\
\Leftarrow & \quad\{\text { cancel } q ? \text { assuming } z \cdot \mathbf{K} q ?=q ? \cdot z(12)\} \\
& z \subseteq \frac{b a g \cdot t}{b a g}
\end{aligned}
$$

Algebra $z: \mathbf{K} \mathbf{T} \rightarrow \mathbf{T}$ should implement (inner) metaphor $\frac{\mathrm{bag} \cdot \mathrm{t}}{\mathrm{bag}}$, essentially requiring that z preserves the bag of elements of the lists involved.

Standard z is the well-known list merge function that merges two ordered lists into an ordered list. Check that this behaviour is required by the last assumption above: $z \cdot \mathrm{~K} q$? $=q$? $\cdot z$.

"Hard Split, Easy Join"

Calculations in this case (cf. quicksort) are more elaborate.
Recall the overall scheme, tuned for this case:

$$
q ? \cdot \frac{b a g}{b a g}
$$

$\mathbf{W}=1+A \times \mathbf{W}^{2}$ in this case, in which h instantiates to flatten, the fold which does inorder traversal of \mathbf{W}.

Details in (Oliveira, 2015).

AoP, pp.154-155

Quicksort

The so-called 'advanced' sorting algorithms (quicksort, mergesort, heapsort, and so on) all use some form of tree as an intermediate datatype. Here we sketch the development of Hoare's quicksort (Hoare 1962), which follows the path of selection sort quite closely.

Consider the type tree A defined by

$$
\text { tree } A::=n v l l \mid \text { fork }(\text { tree } A, A, \text { tree } A)
$$

The function flatten : list $A \leftarrow$ tree A is defined by

$$
\text { flatten }=(\text { nil }, \text { join }\rceil
$$

where join $(x, a, y)=x+[a]+y$. Thus flatten produces a list of the elements in a tree in left to right order.

In outline, the derivation of quicksort is

```
    ordered - perm
{since flatten is a function}
    ordered flatten flatten }\mp@subsup{}{}{0}\mathrm{ - perm
={claim: ordered }\mathrm{ flatten =flatten }\cdot\mathrm{ inordered (see below)}
    flatten inordered flatten }\mp@subsup{}{}{\circ}\mathrm{ perm
= {converses}
    flatten ( (perm - flatten - inordered)}\mp@subsup{}{}{\circ
{fusion, for an appropriate definition of split}
    flatten. (nil,split }\mp@subsup{}{}{\circ}\mp@subsup{)}{}{\circ}
```

In quicksort we head for an algorithm expressed as a hylomorphism using trees as an intermediate datatype.

The coreflexive inordered on trees is defined by

$$
\text { inondered }=(\text { null }, \text { fork } \cdot \text { check })
$$

where the coreflexive check holds for (x, a, y) if

$$
(\forall b: b \text { intree } x \Rightarrow b R a) \wedge(\forall b: b \text { intree } y \Rightarrow a R b) .
$$

The relation intree is the membership test for trees. Introducing $\mathrm{F} f=f \times i d \times f$ for brevity, the proviso for the fusion step in the above calculation is

To establish this condition we need the coreflexive check' that holds for (x, a, y) if

$$
(\forall b: b \text { inlist } x \Rightarrow b R c) \wedge(\forall b: b \text { inlist } y \Rightarrow a R b) .
$$

Thus check' is similar to check except for the switch to lists.
We now reason:
perm \cdot flatten • fork • check
$=\{$ catamorphisms, since flatten $=($ nil, join $]\}$ perm join F flatten \cdot check
$=\left\{\right.$ claim: F flatten \cdot check $=$ check ${ }^{\prime} \cdot$ Fflatten $\}$ perm - join \cdot check • F flatten
$=$ \{claim: perm \cdot join $=$ perm \cdot join $\cdot \mathrm{F}$ perm $\}$ perm \cdot join $\cdot \mathrm{F}$ perm \cdot check' F flatten
$=\left\{\right.$ claim: F perm \cdot check ${ }^{\prime}=$ check' $\cdot \mathrm{F}$ perm; functors $\}$ perm \cdot join \cdot check $\cdot \mathrm{F}$ (perm \cdot flatten)
$\supseteq \quad\left\{\right.$ taking split \subseteq check $^{\prime} \cdot$ join $^{\circ} \cdot$ perm $\}$ split ${ }^{\circ} \cdot \mathrm{F}($ perm \cdot flatten $)$.

Formal proofs of the three claims are left as exercises. In words, split is defined by the rule that if $(y, a, z)=s p l i t x$, then $y+[a]+z$ is a permutation of x with $b R a$ for all b in y and $a R b$ for all b in z. As in the case of selection sort, we can implement split with a catamorphism on non-empty lists:

$$
\text { split }=(\text { base }, \text { step } \rrbracket \cdot \text { embed } .
$$

The fusion conditions are:

$$
\begin{array}{r}
\text { base } \subseteq \text { check }^{\prime} \cdot \text { join }{ }^{\circ} \cdot \text { perm } \cdot \text { wrap } \\
\text { split } \cdot\left(\text { id } \times \text { check }^{\prime} \cdot \text { join }\right)
\end{array} \subseteq \text { check }^{\prime} \cdot \text { join }^{\circ} \cdot \text { perm } \cdot \text { cons. } . ~ \$
$$

These conditions are satisfied by taking

$$
\begin{aligned}
\text { base } a & =([\mid, a,[]) \\
\operatorname{step}(a,(x, b, y)) & = \begin{cases}([a]+x, b, y), & \text { if } a R b \\
(x, b,[a]+y), & \text { otherwise. }\end{cases}
\end{aligned}
$$

Finally, appeal to the hylomorphism theorem gives that $X=$ flatten $\left.\cdot(\| n i l, \text { split })^{\circ}\right)^{\circ}$ is the least solution of the equation

Wrapping up

We have generalized the calculation of quicksort given in the AoP textbook (Bird and de Moor, 1997).

Generic calculation of the refinement of metaphorisms into hylomorphisms by changing the virtual data structure.

Metaphorism identified as a class of relational specifications.
Currently working out the text formatting metaphorism, where R in $M=\left(f^{\circ} \cdot g\right) \upharpoonright R$ includes more than one optimization criterion, e.g.

- fixed maximum number of characters per output line
- maximize number of words per line (minimize white space)

Metaphorism - exploratory concept (recent research topic).

References
R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science. Prentice-Hall, 1997.
B.T. Howard. Another iteration on Darlington's 'A Synthesis of Several Sorting Algorithms'. Technical Report KSU CIS 94-8, Department of Computing and Information Sciences, Kansas State University, 1994.
G. Hutton and E. Meijer. Back to basics: Deriving representation changers functionally. JFP, 6(1):181-188, 1996.
G. Lakoff and M. Johnson. Metaphors we live by. University of Chicago Press, Chicago, 1980. ISBN 978-0-226-46800-6.
J.N. Oliveira. Metaphorisms in programming. In RAMiCS 2015, volume 9348 of LNCS, pages 171-190. Springer-Verlag, 2015. doi: 10.1007/978-3-319-24704-5_11.
I.A. Richards. The Philosophy of Rhetoric. Oxford University Press, 1936.
D. Swierstra and O. de Moor. Virtual data structures. In B. Möller, H. Partsch, and S. Schuman, editors, Formal Program Development, volume 755 of LNCS, pages 355-371. Springer-Verlag, 1993. ISBN 978-3-540-57499-6

[^0]: ${ }^{1}$ Predicate $m n(x, x s)$ ensures that list $x: x s$ is such that x is at most the minimum of $x s$, if it exists.

[^1]: ${ }^{2}$ Also note that the empty list is treated separately from this scheme.

