Directed containers as categories

Danel Ahman, University of Edinburgh
Tarmo Uustalu, Inst. of Cybernetics, Tallinn

TSEM, Tallinn, 14 April 2016

Motivation

- Containers are a representation of a wide class of set functors (datatypes) in terms of shapes and positions.
- Containers are a great tool for doing combinatorics of datatypes.
- Polynomials are essentially the same as containers.
- Directed containers (A., Chapman, U., FoSSaCS 2012) are a specialization of containers to those whose interpretation is a comonad.
In a directed container, a positions of shape defines another shape (the subshape).

This talk

- We look at directed containers through the polynomial glasses.
- This reveals a symmetry in directed containers (between shapes and subshapes) that is absent in directed container morphisms.
- A directed container is a category. But a directed container morphism is not a functor.
- We consider two basic constructions/specializations that this identification suggests.

Plan

- Containers and directed containers
- The polynomial view
- The opposite directed container
- Bidirected containers

Containers

- A container is a set S (of shapes) and a S-indexed family of sets P (of positions).
- It interprets into a set functor $\llbracket S, P \rrbracket^{\mathrm{c}}={ }_{\mathrm{df}} F$ where

$$
\begin{gathered}
F X={ }_{\mathrm{df}} \Sigma s: S . P s \rightarrow X \\
F f(s, v)=_{\mathrm{df}}(s, \lambda p . f(v p))
\end{gathered}
$$

- A container morphism between (S, P) and $\left(S^{\prime}, P^{\prime}\right)$ is given by maps $t: S \rightarrow S^{\prime}$ and $q: \Pi s: S . P^{\prime}(t s) \rightarrow P s$.
- It interprets into a nat. tr.

$$
\begin{aligned}
& \llbracket t, q \rrbracket^{\mathrm{c}}={ }_{\mathrm{df}} \tau: \llbracket S, P \rrbracket^{\mathrm{c}} \rightarrow \llbracket S^{\prime}, P^{\prime} \rrbracket^{\mathrm{c}} \text { where } \\
& \tau(s, v)={ }_{\mathrm{df}}(t s, \lambda p . v(q s p))
\end{aligned}
$$

- Containers and container morphisms form a monoidal category Cont.
- Interpretation $\llbracket-\rrbracket^{c}$ is a fully faithful monoidal functor from Cont to [Set, Set].

Directed containers

- A directed container is a container (S, P) with
- $\downarrow: \Pi s: S . P s \rightarrow S$ (the subshape for a position),
- o: $\Pi\{s: S\} . P s$ (the root position),
- $\oplus: \Pi\{s: S\} . \Pi p: P s . P(s \downarrow p) \rightarrow P s$ (translation of subshape positions)
such that

$$
\begin{gathered}
s \downarrow \circ=s \\
s \downarrow\left(p \oplus p^{\prime}\right)=(s \downarrow p) \downarrow p^{\prime} \\
p \oplus 0=p \\
\circ \oplus p=p \\
\left(p \oplus p^{\prime}\right) \oplus p^{\prime \prime}=p \oplus\left(p^{\prime} \oplus p^{\prime \prime}\right)
\end{gathered}
$$

- It interprets into a set comonad
$\llbracket S, P, \downarrow, \mathrm{o}, \oplus \rrbracket^{\mathrm{dc}}={ }_{\mathrm{df}}(D, \varepsilon, \delta)$ where

$$
\begin{gathered}
D==_{\mathrm{df}} \llbracket S, P \rrbracket^{\mathrm{c}} \\
\varepsilon(s, v)=_{\mathrm{df}} v(\mathrm{o}\{s\}) \\
\delta(s, v)=_{\mathrm{df}}\left(s, \lambda p \cdot\left(s \downarrow p, \lambda p^{\prime} \cdot v\left(p \oplus\{s\} p^{\prime}\right)\right)\right)
\end{gathered}
$$

Directed containers ctd

- A directed container morphism between $(S, P, \downarrow, \mathrm{o}, \oplus)$ and $\left(S^{\prime}, P^{\prime}, \downarrow^{\prime}, o^{\prime}, \oplus^{\prime}\right)$ is a container morphism (t, q) between (S, P) and $\left(S^{\prime}, P^{\prime}\right)$ such that

$$
\begin{gathered}
t(s \downarrow q s p)=t s \downarrow^{\prime} p \\
\circ\{s\}=q s\left(o^{\prime}\{t s\}\right) \\
q s p \oplus\{s\} q(s \downarrow q s p) p^{\prime}=q s\left(p \oplus^{\prime}\{t s\} p^{\prime}\right)
\end{gathered}
$$

- It interprets into $\llbracket t, q \rrbracket^{\mathrm{dc}}={ }_{\mathrm{df}} \llbracket t, q \rrbracket^{\mathrm{c}}$, which is a comonad morphism betw. $\llbracket S, P, \downarrow, o, \oplus \rrbracket^{\mathrm{dc}}$ and $\llbracket S^{\prime}, P^{\prime}, \downarrow^{\prime}, \mathrm{o}^{\prime}, \oplus^{\prime} \rrbracket^{\mathrm{dc}}$.
- Directed containers and directed container morphisms form a category DCont.
- Interpretation $\llbracket-\rrbracket^{\text {dc }}$ is a fully-faithful functor from DCont to Comonads(Set).
- In fact $\llbracket-\rrbracket^{\text {dc }}$ is the pullback of $\llbracket-\rrbracket^{\text {c }}$ along $U:$ Comonads(Set) $\rightarrow[$ Set, Set $]$.

Streams, lists with suffixes, lists with cyclic shifts

- Streams:
$S={ }_{\mathrm{df}} 1, P *={ }_{\mathrm{df}}$ Nat, $* \downarrow p={ }_{\mathrm{df}} *$,
$0={ }_{\mathrm{df}} 0, p \oplus p^{\prime}={ }_{\mathrm{df}} p+p^{\prime}$
$D X={ }_{\mathrm{df}} \Sigma *: 1$. Nat $\rightarrow X \cong \operatorname{Str} X$
- Lists with suffixes:
$S={ }_{\mathrm{df}}$ Nat, $P s={ }_{\mathrm{df}}[0 . . s], s \downarrow p={ }_{\mathrm{df}} s-p$,
$0={ }_{\mathrm{df}} 0, p \oplus p^{\prime}={ }_{\mathrm{df}} p+p^{\prime}$
$D X={ }_{\mathrm{df}} \Sigma s:$ Nat. $[0 . . s] \rightarrow X \cong$ NEList X
- Lists with cyclic shifts:
$S={ }_{\mathrm{df}}$ Nat, $P s={ }_{\mathrm{df}}[0 . . s], s \downarrow p={ }_{\mathrm{df}} s$,
$0={ }_{\mathrm{df}} 0, p \oplus\{s\} p^{\prime}={ }_{\mathrm{df}}\left(p+p^{\prime}\right) \bmod (s+1)$
$D X={ }_{\mathrm{df}} \Sigma s:$ Nat. $[0 . . s] \rightarrow X \cong$ NEList X

Reader comonad, array comonad

- Reader comonad:
S any given set, $P s={ }_{\mathrm{df}} 1$
$D X={ }_{\mathrm{df}} \Sigma s: S .1 \rightarrow X \cong S \times X$
- Array (costate) comonad:
S any given set, $P s={ }_{\mathrm{df}} S, s \downarrow s^{\prime}={ }_{\mathrm{df}} s^{\prime}$, $\circ\{s\}={ }_{\mathrm{df}} s$ and $s^{\prime} \oplus\{s\} s^{\prime \prime}={ }_{\mathrm{df}} s^{\prime \prime}$
$D X={ }_{\mathrm{df}} \Sigma s: S . S \rightarrow X \cong S \times(S \rightarrow X)$

Containers as polynomials

- A polynomial is given by sets S and \bar{P} (positions across all shapes) and a map s : $\bar{P} \rightarrow S$ (the shape of a position).
- Polynomials are in a bijection up to iso. with containers. They are interconverted by

$$
\begin{gathered}
\bar{P}={ }_{\mathrm{df}} \Sigma s: S \cdot P s \quad P s={ }_{\mathrm{df}} \Sigma p: \bar{P} \cdot\{\mathbf{s} p=s\} \\
\mathbf{s}(s, p)={ }_{\mathrm{df}} s
\end{gathered}
$$

Containers as polynomials ctd

- A polynomial morphism between (S, \bar{P}, \mathbf{s}) and $\left(S^{\prime}, \bar{P}^{\prime}, \mathbf{s}^{\prime}\right)$ is given by maps $t: S \rightarrow S^{\prime}$ and $\bar{q}:\left(\Sigma s: S . \Sigma p: \bar{P}^{\prime} .\left\{t s=s^{\prime} p\right\}\right) \rightarrow \bar{P}$ such that $\mathbf{s}(\bar{q}(s, p))=s$.
- Container morphisms and polynomial morphisms are interconverted by

$$
\bar{q}(s, p)=_{\mathrm{df}} q s p \quad q s p==_{\mathrm{df}} \bar{q}(s, p)
$$

- Polynomials and polynomial morphisms form category Poly.
- Cont and Poly are equivalent categories.

Directed containers as "directed polynomials"

- A directed polynomial is given by sets S, \bar{P}, a map $\mathbf{s}: \bar{P} \rightarrow S$ and maps
- $\mathbf{t}: \bar{P} \rightarrow S$,
- id : $\{S\} \rightarrow \bar{P}$ such that $\mathbf{s}($ id $\{s\})=s$,
- ; $\left(\Sigma p: \bar{P} . \Sigma p^{\prime}: \bar{P} .\left\{\mathbf{t} p=\mathbf{s} p^{\prime}\right\}\right) \rightarrow \bar{P}$ such that

$$
\mathbf{s}\left(p ; p^{\prime}\right)=\mathbf{s} p
$$

such that

$$
\begin{gathered}
\mathbf{t}(\mathbf{i d}\{s\})=s \\
\mathbf{t}\left(p ; p^{\prime}\right)=\mathbf{t} p^{\prime} \\
p ; \mathbf{i d}\{s\}=p \\
\mathbf{i d}\{s\} ; p=p \\
\left(p ; p^{\prime}\right) ; p^{\prime \prime}=p ;\left(p^{\prime} ; p^{\prime \prime}\right)
\end{gathered}
$$

i.e., a category!

- Directed containers and directed polynomials in a bijection up to iso.; they are interconverted by

$$
\begin{array}{cc}
\bar{P}={ }_{\text {df }} \sum s: S . P s & P s==_{\text {df }} \sum p: \bar{P} .\{\mathbf{s} p=s\} \\
\mathbf{s}(s, p)==_{\text {df }} s & \\
\mathbf{t}(s, p)==_{\text {df }} s \downarrow p & s \downarrow p==_{\text {df }} \mathbf{t} p \\
\text { id }\{s\}={ }_{\text {df }}(s, o\{s\}) & \circ\{s\}={ }_{\text {df }} \text { id }\{s\} \\
(s, p) ;\left(s \downarrow p, p^{\prime}\right)==_{\text {df }}\left(s, p \oplus\{s\} p^{\prime}\right) & p \oplus\{s\} p^{\prime}={ }_{\text {df }} p ; p^{\prime}
\end{array}
$$

Directed containers as "directed polynomials" ctd

- A directed polynomial morphism between ($S, \bar{P}, \mathbf{s}, \mathbf{t}, \mathbf{i d}, ;$) and $\left(S^{\prime}, \bar{P}^{\prime}, \mathbf{s}^{\prime}, \mathbf{t}^{\prime}, \mathbf{i d}^{\prime}, ;^{\prime}\right)$ is given by maps $t: S \rightarrow S^{\prime}$ and $\bar{q}:\left(\Sigma s: S . \Sigma p: \bar{P}^{\prime} .\left\{t s=s^{\prime} p\right)\right\} \rightarrow \bar{P}$ such that $\mathbf{s}(\bar{q}(s, p))=s$ and

$$
\begin{gathered}
t(\mathbf{t}(\bar{q}(s, p)))=\mathbf{t}^{\prime} p \\
\mathbf{i d}\{s\}=\bar{q}\left(s, \mathbf{i d}^{\prime}\{t s\}\right) \\
\bar{q}(s, p) ; \bar{q}\left(\mathbf{t}(\bar{q}(s, p)), p^{\prime}\right)=\bar{q}\left(s, p ; p^{\prime}\right)
\end{gathered}
$$

- This is nothing like a functor. At best we could call it a "relative split pre-opcleavage".
t is only an object map, not a functor!
- Directed polynomials forma catecory DPoly.
- DCont and DPoly are equivalent categories. Directed container morphisms and directed polynomial morphisms are interconverted by

$$
\bar{q}(s, p)=_{\mathrm{df}} q s p \quad q s p={ }_{\mathrm{df}} \bar{q}(s, p)
$$

Directed containers as "directed polynomials" ctd

- For (t, \bar{q}) a directed polynomial morphism between $E=(S, \bar{P}, \mathbf{s}, \mathbf{t}, \mathbf{i d}, ;)$ and $E^{\prime}=\left(S^{\prime}, \bar{P}^{\prime}, \mathbf{s}^{\prime}, \mathbf{t}^{\prime}, \mathbf{i d}^{\prime}, ;^{\prime}\right)$ we have

- We could reasonably say that \bar{q} is a split pre-opcleavage for $t^{\dagger}: E \rightarrow S^{\prime \dagger}$ relative to ! : $E^{\prime} \rightarrow S^{\prime \dagger}$ where $S^{\prime \dagger}$ is the cofree category on S^{\prime}.
- "pre" - we don't require the maps delivered to be opCartesian;
"split" - we do require them to agree with each other

Streams, lists w. suffixes, lists w. cyclic shifts again

- Streams:
$S={ }_{\mathrm{df}} 1, \bar{P}={ }_{\mathrm{df}}$ Nat, sp=${ }_{\mathrm{df}} *$,
$\mathbf{t} p={ }_{\mathrm{df}} *, \mathbf{i d}={ }_{\mathrm{df}} 0, p ; p^{\prime}={ }_{\mathrm{df}} p+p^{\prime}$
This is the monoid (Nat, $0,+$) seen as a category.
- Lists with suffixes:
$S={ }_{\mathrm{df}}$ Nat, $\bar{P}={ }_{\mathrm{df}} \Sigma s:$ Nat. $[0 . . s], \mathbf{s}(s, p)={ }_{\mathrm{df}} s$,
$\mathbf{t}(s, p)={ }_{\mathrm{df}} s-p$, id $\{s\}={ }_{\mathrm{df}}(s, 0)$,
$(s, p) ;\left(s-p, p^{\prime}\right)={ }_{\mathrm{df}}\left(s, p+p^{\prime}\right)$
- Lists with cyclic shifts:

$$
\begin{aligned}
& S={ }_{\mathrm{df}} \text { Nat, } \bar{P}={ }_{\mathrm{df}} \Sigma s: \text { Nat. [0..s], s }(s, p)={ }_{\mathrm{df}} s, \\
& \mathbf{t}(s, p)={ }_{\mathrm{df}} s, \text { id }\{s\}={ }_{\mathrm{df}}(s, 0), \\
& (s, p) ;\left(s, p^{\prime}\right)={ }_{\mathrm{df}}\left(s,\left(p+p^{\prime}\right) \bmod (s+1)\right)
\end{aligned}
$$

Reader comonad, array comonad

- Reader comonad:
S any given set, $\bar{P}={ }_{\mathrm{df}} \Sigma s: S .1 \cong S, \mathbf{s} s={ }_{\mathrm{df}} s$,
$\mathbf{t} s={ }_{\mathrm{df}} s, \mathbf{i d}\{s\}={ }_{\mathrm{df}} s, s ; s={ }_{\mathrm{df}} s$
This is the discrete category (free category) on S.
$D X={ }_{\mathrm{df}} \Sigma s: S .1 \rightarrow X \cong S \times X$
- Array (costate) comonad:
S any given set, $\bar{P}={ }_{\mathrm{df}} \Sigma s: S . S \cong S \times S, \mathbf{s}\left(s, s^{\prime}\right)={ }_{\mathrm{df}} s$, $\mathbf{t}\left(s, s^{\prime}\right)=_{\mathrm{df}} s^{\prime}$, id $\{s\}==_{\mathrm{df}}(s, s),\left(s, s^{\prime}\right) ;\left(s^{\prime}, s^{\prime \prime}\right)=_{\mathrm{df}}\left(s, s^{\prime \prime}\right)$
This is the codiscrete category (cofree category) on S.
$D X={ }_{\mathrm{df}} \Sigma s: S . S \rightarrow X \cong S \times(S \rightarrow X)$

The opposite directed container

- Given a category $(S, \bar{P}, \mathbf{s}, \mathbf{t}, \mathbf{i d}, ;)$, the opposite category is $\left(S^{\mathrm{op}}, \bar{P}^{\mathrm{op}}, \mathbf{s}^{\mathrm{op}}, \mathbf{t}^{\mathrm{op}}, \mathbf{i d}^{\mathrm{op}}, ;{ }^{\mathrm{op}}\right)$ where

$$
\begin{aligned}
S^{\mathrm{op}} & ={ }_{\mathrm{df}} S \\
\bar{P}^{\mathrm{op}} & ={ }_{\mathrm{df}} \bar{P} \\
\mathbf{s}^{\mathrm{op}} p & ={ }_{\mathrm{df}} \mathbf{t} p \\
\mathbf{t}^{\mathrm{op}} p & ={ }_{\mathrm{df}} \mathbf{s} p \\
\mathbf{i d}^{\mathrm{op}}\{s\} & ={ }_{\mathrm{df}} \mathbf{i d}\{s\} \\
f ; ; \mathrm{op}^{g}= & ={ }_{\mathrm{df}} g ; f
\end{aligned}
$$

- Given a directed container ($S, P, \downarrow, \mathrm{o}, \oplus$), the "opposite" directed container is $\left(S^{\mathrm{op}}, P^{\mathrm{op}}, \downarrow^{\mathrm{op}}, \mathrm{o}^{\mathrm{op}}, \oplus^{\mathrm{op}}\right)$ where

$$
\begin{gathered}
S^{\mathrm{op}}={ }_{\mathrm{df}} S \\
P^{\mathrm{op}} s={ }_{\mathrm{df}} \sum s^{\prime}: S . \sum_{\mathrm{d}}: P s^{\prime} \cdot\left\{s=s^{\prime} \downarrow p\right\} \\
s \downarrow^{\mathrm{op}}\left(s^{\prime}, p\right)==_{\mathrm{df}} s^{\prime} \\
\mathrm{o}^{\mathrm{op}}\{s\}==_{\mathrm{df}}(s, \circ\{s\}) \\
\left(s^{\prime}, p\right) \oplus^{\mathrm{op}}\{s\}\left(s^{\prime \prime}, p^{\prime}\right)==_{\mathrm{df}}\left(s^{\prime \prime}, p^{\prime} \oplus\left\{s^{\prime \prime}\right\} p\right)
\end{gathered}
$$

Lists with suffixes

- The opposite category is:

$$
\begin{gathered}
S^{\mathrm{op}}={ }_{\mathrm{df}} \text { Nat } \\
\bar{P}^{\mathrm{op}}=\mathrm{df} \sum_{s}: \text { Nat. }[0 . . s] \\
\mathbf{s}^{\mathrm{op}}(s, p)={ }_{\mathrm{df}} s-p \\
\mathbf{t}^{\mathrm{op}}(s, p)={ }_{\mathrm{df}} s \\
\mathbf{i d}^{\mathrm{op}}\{s\}==_{\mathrm{df}}(s, 0) \\
\left(s-p, p^{\prime}\right) ;{ }^{\mathrm{op}}(s, p)={ }_{\mathrm{df}}\left(s, p+p^{\prime}\right)
\end{gathered}
$$

Lists with suffixes ctd

- The opposite directed container is (the systematic definition and a simplified one):

$$
\begin{aligned}
& S^{\mathrm{op}}={ }_{\mathrm{df}} \mathrm{Nat} \\
& P^{\mathrm{op}} s={ }_{\mathrm{df}} \Sigma s^{\prime}: \text { Nat. } \Sigma p:\left[0 . . s^{\prime}\right] .\left\{s=s^{\prime}-p\right\} \\
& s \downarrow^{\mathrm{op}}\left(s^{\prime}, p\right)={ }_{\mathrm{df}} s^{\prime} \\
& \mathrm{o}^{\mathrm{op}}\{s\}={ }_{\mathrm{df}}(s, 0) \\
& \left(s^{\prime}, p\right) \oplus^{\mathrm{op}}\{s\}\left(s^{\prime \prime}, p^{\prime}\right)==_{\mathrm{df}}\left(s^{\prime \prime}, p^{\prime}+p\right) \quad p \oplus^{\mathrm{op}} p^{\prime}==_{\mathrm{df}} p^{\prime}+p
\end{aligned}
$$

- The corresponding comonad is:
$D^{\mathrm{op}} X={ }_{\mathrm{df}} \Sigma s:$ Nat. Nat $\rightarrow X \cong$ Nat $\times \operatorname{Str} X$,
$\varepsilon(s, x s)={ }_{\text {df }}$ hd $x s$, $\delta(s, x s)={ }_{\text {df }}\left(s, \delta_{0}(s, x s)\right)$
where $\delta_{0}(s, x s)={ }_{\mathrm{df}}(s, x s):=\delta_{0}(s+1, \mathrm{tl} x s)$.

Bidirected containers as groupoids

- A groupoid is a category $(S, \bar{P}, \mathbf{s}, \mathbf{t}, \mathbf{i d}, ;)$ with a map $(-)^{-1}: \bar{P} \rightarrow \bar{P}$ such that $\mathbf{s}\left(p^{-1}\right)=\mathbf{t} p$ and

$$
\begin{gathered}
\mathbf{t}\left(p^{-1}\right)=\mathbf{s} p \\
p ;\left(p^{-1}\right)=\mathbf{i d}\{\mathbf{s} p\} \\
\left(p^{-1}\right) ; p=\mathbf{i d}\{\mathbf{t} p\}
\end{gathered}
$$

- A "bidirected container" is a directed container $(S, P, \downarrow, \mathrm{o}, \oplus)$ together with a map $\ominus: \Pi\{s: S\} . \Pi p: P s . P(s \downarrow p)$ such that

$$
\begin{gathered}
(s \downarrow p) \downarrow(\ominus\{s\} p)=s \\
p \oplus\{s\}(\ominus\{s\} p)=\mathrm{o}\{s\} \\
(\ominus\{s\} p) \oplus\{s \downarrow p\} p=\mathrm{o}\{s \downarrow p\}
\end{gathered}
$$

Bidirected containers as groupoids ctd

- Groupoids and bidirected containers are in a bijection up to iso.; the conversions are

$$
\ominus\{s\} p={ }_{\mathrm{df}} p^{-1} \quad(s, p)^{-1}={ }_{\mathrm{df}}(s \downarrow p, \ominus\{s\} p)
$$

- If a category is a groupoid, it is isomorphic to its opposite category. The converse does generally not hold.

Lists with cyclic shifts

- The category fo the lists with cyclic shifts comonad is a groupoid:

$$
(s, p)^{-1}={ }_{\mathrm{df}}(s,-p \bmod (s+1))
$$

In the corresponding bidirected container we have

$$
\ominus\{s\} p==_{\mathrm{df}}-p \bmod (s+1)
$$

Takeaway

- The polynomial view reveals a symmetry between shapes/subshapes in a directed container.
- This makes specific constructions and specializations available for containers that are comonads.
- Directed container morphisms do not exhibit the same symmetry.
- Directed containers appear special in that, e.g., containers that are monads do not admit a comparably simple description.

