Directed containers as categories

Danel Ahman, University of Edinburgh <u>Tarmo Uustalu</u>, Inst. of Cybernetics, Tallinn

TSEM, Tallinn, 14 April 2016

Motivation

- Containers are a representation of a wide class of set functors (datatypes) in terms of shapes and positions.
- Containers are a great tool for doing combinatorics of datatypes.
- Polynomials are essentially the same as containers.
- Directed containers (A., Chapman, U., FoSSaCS 2012) are a specialization of containers to those whose interpretation is a comonad.

In a directed container, a positions of shape defines another shape (the subshape).

This talk

- We look at directed containers through the polynomial glasses.
- This reveals a symmetry in directed containers (between shapes and subshapes) that is absent in directed container morphisms.
- A directed container is a category.
 But a directed container morphism is not a functor.
- We consider two basic constructions/specializations that this identification suggests.

Plan

• Containers and directed containers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The polynomial view
- The opposite directed container
- Bidirected containers

Containers

- A *container* is a set *S* (of shapes) and a *S*-indexed family of sets *P* (of positions).
- It interprets into a set functor $[\![S, P]\!]^c =_{df} F$ where

$$F X =_{df} \Sigma s : S. P s \rightarrow X$$

F f (s, v) =_{df} (s, $\lambda p. f (v p)$)

 A container morphism between (S, P) and (S', P') is given by maps t : S → S' and q : Πs : S. P'(ts) → Ps.

• It interprets into a nat. tr.

$$\llbracket t, q \rrbracket^{c} =_{df} \tau : \llbracket S, P \rrbracket^{c} \to \llbracket S', P' \rrbracket^{c} \text{ where}$$

$$\tau (s, v) =_{df} (t s, \lambda p. v (q s p))$$

- Containers and container morphisms form a monoidal category **Cont**.
- Interpretation [[-]]^c is a fully faithful monoidal functor from Cont to [Set, Set].

Directed containers

• A directed container is a container (S, P) with

- \downarrow : Πs : S. $P s \rightarrow S$ (the subshape for a position),
- $o: \Pi\{s: S\}$. *Ps* (the root position),
- \oplus : $\Pi\{s:S\}$. $\Pi p: P s. P(s \downarrow p) \rightarrow P s$ (translation of subshape positions)

such that

$$s \downarrow o = s$$

 $s \downarrow (p \oplus p') = (s \downarrow p) \downarrow p'$
 $p \oplus o = p$
 $o \oplus p = p$
 $(p \oplus p') \oplus p'' = p \oplus (p' \oplus p'')$

• It interprets into a set comonad $\llbracket S, P, \downarrow, \mathbf{o}, \oplus \rrbracket^{\mathrm{dc}} =_{\mathrm{df}} (D, \varepsilon, \delta) \text{ where}$ $D =_{\mathrm{df}} \llbracket S, P \rrbracket^{\mathrm{c}}$ $\varepsilon (s, v) =_{\mathrm{df}} v (\mathbf{o} \{s\})$ $\delta (s, v) =_{\mathrm{df}} (s, \lambda p. (s \downarrow p, \lambda p'. v (p \oplus \{s\} p')))$

Directed containers ctd

 A directed container morphism between (S, P, ↓, o, ⊕) and (S', P', ↓', o', ⊕') is a container morphism (t, q) between (S, P) and (S', P') such that

$$t(s \downarrow q s p) = t s \downarrow' p$$

o {s} = q s (o' {t s})
q s p \oplus {s} q(s \downarrow q s p) p' = q s (p \oplus' {t s} p')

- It interprets into [[t, q]]^{dc} =_{df} [[t, q]]^c, which is a comonad morphism betw. [[S, P, ↓, o, ⊕]]^{dc} and [[S', P', ↓', o', ⊕']]^{dc}.
- Directed containers and directed container morphisms form a category **DCont**.
- Interpretation [[−]]^{dc} is a fully-faithful functor from DCont to Comonads(Set).
- In fact [[−]]^{dc} is the pullback of [[−]]^c along
 U: Comonads(Set) → [Set, Set].

Streams, lists with suffixes, lists with cyclic shifts

• Streams:

$$S =_{df} 1, P * =_{df} Nat, * \downarrow p =_{df} *,$$

o =_{df} 0, $p \oplus p' =_{df} p + p'$
 $D X =_{df} \Sigma * : 1. Nat \rightarrow X \cong Str X$

Lists with suffixes:

$$S =_{df} \text{Nat, } P s =_{df} [0..s], s \downarrow p =_{df} s - p,$$

o =_{df} 0, p \oplus p' =_{df} p + p'
 $D X =_{df} \Sigma s : \text{Nat.} [0..s] \rightarrow X \cong \text{NEList } X$

• Lists with cyclic shifts:

$$S =_{df} \text{Nat, } P s =_{df} [0..s], s \downarrow p =_{df} s,$$

o =_{df} 0, p \oplus {s} p' =_{df} (p + p') mod (s + 1)
 $D X =_{df} \Sigma s$: Nat. [0..s] $\rightarrow X \cong \text{NEList } X$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Reader comonad, array comonad

- Reader comonad:
 - S any given set, $Ps =_{
 m df} 1$
 - $DX =_{\mathrm{df}} \Sigma s : S.1 \to X \cong S \times X$
- Array (costate) comonad:

$$\begin{array}{l} S \text{ any given set, } P \, s =_{\mathrm{df}} S, \, s \downarrow s' =_{\mathrm{df}} s', \\ \mathrm{o} \left\{s\right\} =_{\mathrm{df}} s \text{ and } s' \oplus \left\{s\right\} s'' =_{\mathrm{df}} s'' \\ D \, X =_{\mathrm{df}} \Sigma s : S. \, S \to X \cong S \times (S \to X) \end{array}$$

Containers as polynomials

- A *polynomial* is given by sets S and \overline{P} (positions across all shapes) and a map $\mathbf{s} : \overline{P} \to S$ (the shape of a position).
- Polynomials are in a bijection up to iso. with containers. They are interconverted by

$$ar{P} =_{ ext{df}} \Sigma s : S. P s$$
 $P s =_{ ext{df}} \Sigma p : ar{P}. \{ \mathbf{s} \, p = s \}$
 $\mathbf{s}(s, p) =_{ ext{df}} s$

Containers as polynomials ctd

- A polynomial morphism between $(S, \overline{P}, \mathbf{s})$ and $(S', \overline{P}', \mathbf{s}')$ is given by maps $t : S \to S'$ and $\overline{q} : (\Sigma s : S. \Sigma p : \overline{P}'. \{t s = \mathbf{s}' p\}) \to \overline{P}$ such that $\mathbf{s}(\overline{q}(s, p)) = s.$
- Container morphisms and polynomial morphisms are interconverted by

$$\bar{q}(s,p) =_{\mathrm{df}} q s p$$
 $q s p =_{\mathrm{df}} \bar{q}(s,p)$

- Polynomials and polynomial morphisms form category **Poly**.
- Cont and Poly are equivalent categories.

Directed containers as "directed polynomials"

A directed polynomial is given by sets S, P
, a map
 s : P
→ S and maps

•
$$\mathbf{t} : \overline{P} \to S$$
,
• $\mathbf{id} : \{S\} \to \overline{P}$ such that $\mathbf{s}(\mathbf{id} \{s\}) = s$,
• $; : (\Sigma p : \overline{P}, \Sigma p' : \overline{P}, \{\mathbf{t} \ p = \mathbf{s} \ p'\}) \to \overline{P}$ such that $\mathbf{s}(p; p') = \mathbf{s} \ p$

such that

$$t (id {s}) = s$$

$$t (p; p') = t p'$$

$$p; id {s} = p$$

$$id {s}; p = p$$

$$(p; p'); p'' = p; (p'; p'')$$

i.e., a category!

• Directed containers and directed polynomials in a bijection up to iso.; they are interconverted by

$$\begin{split} \bar{P} =_{\mathrm{df}} \sum s : S \cdot P s & P s =_{\mathrm{df}} \sum p : \bar{P} \cdot \{ \mathbf{s} \, p = s \} \\ \mathbf{s}(s, p) =_{\mathrm{df}} s & \\ \mathbf{t}(s, p) =_{\mathrm{df}} s \downarrow p & s \downarrow p =_{\mathrm{df}} \mathbf{t} \, p \\ \mathbf{id} \{ s \} =_{\mathrm{df}} (s, \circ \{ s \}) & \circ \{ s \} =_{\mathrm{df}} \mathbf{id} \{ s \} \\ (s, p) ; (s \downarrow p, p') =_{\mathrm{df}} (s, p \oplus \{ s \} \, p') & p \oplus \{ s \} p' =_{\mathrm{df}} p ; p' \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Directed containers as "directed polynomials" ctd

• A directed polynomial morphism between $(S, \overline{P}, \mathbf{s}, \mathbf{t}, \mathbf{id}, ;)$ and $(S', \overline{P}', \mathbf{s}', \mathbf{t}', \mathbf{id}', ;')$ is given by maps $t : S \to S'$ and $\overline{q} : (\Sigma s : S, \Sigma p : \overline{P}', \{t s = \mathbf{s}' p\}) \to \overline{P}$ such that $\mathbf{s}(\overline{q}(s, p)) = s$ and

$$t (\mathbf{t} (\bar{q} (s, p))) = \mathbf{t}' p$$

$$\mathbf{id} \{s\} = \bar{q} (s, \mathbf{id}' \{t s\})$$

$$\bar{q} (s, p) ; \bar{q} (\mathbf{t} (\bar{q}(s, p)), p') = \bar{q} (s, p ; p')$$

• This is nothing like a functor. At best we could call it a "relative split pre-opcleavage".

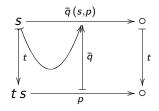
t is only an object map, not a functor!

- Directed polynomials forma catecory **DPoly**.
- **DCont** and **DPoly** are equivalent categories. Directed container morphisms and directed polynomial morphisms are interconverted by

$$\bar{q}(s,p) =_{\mathrm{df}} q s p$$
 $q s p =_{\mathrm{df}} \bar{q}(s,p)$

Directed containers as "directed polynomials" ctd

• For (t, \bar{q}) a directed polynomial morphism between $E = (S, \bar{P}, \mathbf{s}, \mathbf{t}, \mathbf{id}, ;)$ and $E' = (S', \bar{P}', \mathbf{s}', \mathbf{t}', \mathbf{id}', ;')$ we have



• We could reasonably say that \bar{q} is a split pre-opcleavage for $t^{\dagger}: E \to S'^{\dagger}$ relative to $!: E' \to S'^{\dagger}$ where S'^{\dagger} is the cofree category on S'.

 "pre" — we don't require the maps delivered to be opCartesian;

"split" — we do require them to agree with each other

э

Streams, lists w. suffixes, lists w. cyclic shifts again

• Streams:

$$S =_{\mathrm{df}} 1$$
, $\bar{P} =_{\mathrm{df}}$ Nat, $\mathbf{s} p =_{\mathrm{df}} *$,
 $\mathbf{t} p =_{\mathrm{df}} *$, $\mathbf{id} =_{\mathrm{df}} 0$, p ; $p' =_{\mathrm{df}} p + p'$

This is the monoid (Nat, 0, +) seen as a category.

Lists with suffixes:

$$egin{aligned} S =_{ ext{df}} ext{Nat, } ar{P} =_{ ext{df}} \Sigma s : ext{Nat. } [0..s], \ \mathbf{s} \, (s, p) =_{ ext{df}} s, \ \mathbf{t} \, (s, p) =_{ ext{df}} s - p, \ \mathbf{id} \, \{s\} =_{ ext{df}} (s, 0), \ (s, p) \ ; \ (s - p, p') =_{ ext{df}} (s, p + p') \end{aligned}$$

Lists with cyclic shifts:

$$egin{aligned} S =_{ ext{df}} ext{Nat, } ar{P} =_{ ext{df}} \Sigma s : ext{Nat. [0..s], } \mathbf{s}(s, p) =_{ ext{df}} s, \ \mathbf{t}(s, p) =_{ ext{df}} s, \ \mathbf{id} \{s\} =_{ ext{df}} (s, 0), \ (s, p) \ ; \ (s, p') =_{ ext{df}} (s, (p + p') \ ext{mod} \ (s + 1)) \end{aligned}$$

Reader comonad, array comonad

• Reader comonad:

$$S$$
 any given set, $\overline{P} =_{df} \Sigma s : S.1 \cong S$, $\mathbf{s} s =_{df} s$,
 $\mathbf{t} s =_{df} s$, $\mathbf{id} \{s\} =_{df} s$, $s ; s =_{df} s$

This is the discrete category (free category) on S. $D X =_{df} \Sigma s : S. 1 \rightarrow X \cong S \times X$

• Array (costate) comonad:

S any given set,
$$\overline{P} =_{df} \Sigma s : S : S \cong S \times S$$
, $\mathbf{s}(s, s') =_{df} s$,
 $\mathbf{t}(s, s') =_{df} s'$, $\mathbf{id}\{s\} =_{df} (s, s)$, $(s, s'); (s', s'') =_{df} (s, s'')$
This is the codiscrete category (cofree category) on S.

$$DX =_{\mathrm{df}} \Sigma s : S \cdot S \to X \cong S \times (S \to X)$$

The opposite directed container

 Given a category (S, P, s, t, id, ;), the opposite category is (S^{op}, P^{op}, s^{op}, t^{op}, id^{op}, ;^{op}) where

$$S^{\text{op}} =_{\text{df}} S$$
$$\bar{P}^{\text{op}} =_{\text{df}} \bar{P}$$
$$s^{\text{op}} p =_{\text{df}} t p$$
$$t^{\text{op}} p =_{\text{df}} s p$$
$$id^{\text{op}} \{s\} =_{\text{df}} id \{s\}$$
$$f;^{\text{op}} g =_{\text{df}} g; f$$

 Given a directed container (S, P, ↓, o, ⊕), the "opposite" directed container is (S^{op}, P^{op}, ↓^{op}, o^{op}, ⊕^{op}) where

$$S^{\text{op}} =_{\text{df}} S$$

$$P^{\text{op}} s =_{\text{df}} \Sigma s' : S. \Sigma p : P s'. \{s = s' \downarrow p\}$$

$$s \downarrow^{\text{op}} (s', p) =_{\text{df}} s'$$

$$o^{\text{op}} \{s\} =_{\text{df}} (s, o \{s\})$$

$$(s', p) \oplus^{\text{op}} \{s\} (s'', p') =_{\text{df}} (s'', p' \oplus \{s''\} p)$$

Lists with suffixes

• The opposite category is:

$$S^{\text{op}} =_{\text{df}} \text{Nat}$$

$$\bar{P}^{\text{op}} =_{\text{df}} \Sigma s : \text{Nat.} [0..s]$$

$$s^{\text{op}} (s, p) =_{\text{df}} s - p$$

$$t^{\text{op}} (s, p) =_{\text{df}} s$$

$$id^{\text{op}} \{s\} =_{\text{df}} (s, 0)$$

$$(s - p, p');^{\text{op}} (s, p) =_{\text{df}} (s, p + p')$$

Lists with suffixes ctd

• The opposite directed container is (the systematic definition and a simplified one):

$$S^{\text{op}} =_{\text{df}} \text{Nat} \qquad S^{\text{op}} =_{\text{df}} \text{Nat}$$

$$P^{\text{op}} s =_{\text{df}} \sum s' : \text{Nat}. \sum p : [0..s']. \{s = s' - p\} \qquad P^{\text{op}} s =_{\text{df}} \text{Nat}$$

$$s \downarrow^{\text{op}} (s', p) =_{\text{df}} s' \qquad s \downarrow^{\text{op}} p =_{\text{df}} s + p$$

$$o^{\text{op}} \{s\} =_{\text{df}} (s, 0) \qquad o^{\text{op}} =_{\text{df}} 0$$

$$(s', p) \oplus^{\text{op}} \{s\} (s'', p') =_{\text{df}} (s'', p' + p) \qquad p \oplus^{\text{op}} p' =_{\text{df}} p' + p$$

• The corresponding comonad is: $D^{\mathrm{op}} X =_{\mathrm{df}} \Sigma s$: Nat. Nat $\to X \cong$ Nat \times Str X,

$$\begin{split} \varepsilon \left(s, xs \right) =_{\mathrm{df}} \mathrm{hd} \, ss, \\ \delta \left(s, xs \right) =_{\mathrm{df}} \left(s, \delta_0 \left(s, xs \right) \right) \\ & \text{where } \delta_0 \left(s, xs \right) =_{\mathrm{df}} \left(s, xs \right) \text{ : } \delta_0 (s + 1, \mathrm{tl} \, xs). \end{split}$$

Bidirected containers as groupoids

• A groupoid is a category $(S, \overline{P}, \mathbf{s}, \mathbf{t}, \mathbf{id}, ;)$ with a map $(-)^{-1} : \overline{P} \to \overline{P}$ such that $\mathbf{s}(p^{-1}) = \mathbf{t} p$ and

$$\mathbf{t} (p^{-1}) = \mathbf{s} p$$

$$p; (p^{-1}) = \mathbf{id} \{\mathbf{s} p\}$$

$$(p^{-1}); p = \mathbf{id} \{\mathbf{t} p\}$$

A "bidirected container" is a directed container
 (S, P, ↓, o, ⊕) together with a map
 ⊖ : Π{s : S}. Πp : P s. P (s ↓ p) such that

$$(s \downarrow p) \downarrow (\ominus \{s\} p) = s$$
$$p \oplus \{s\} (\ominus \{s\} p) = o \{s\}$$
$$(\ominus \{s\} p) \oplus \{s \downarrow p\} p = o \{s \downarrow p\}$$

Bidirected containers as groupoids ctd

• Groupoids and bidirected containers are in a bijection up to iso.; the conversions are

$$\ominus \{s\} \ p =_{\mathrm{df}} p^{-1}$$
 $(s, p)^{-1} =_{\mathrm{df}} (s \downarrow p, \ominus \{s\} p)$

• If a category is a groupoid, it is isomorphic to its opposite category. The converse does generally not hold.

Lists with cyclic shifts

• The category fo the lists with cyclic shifts comonad is a groupoid:

$$(s,p)^{-1} =_{\mathrm{df}} (s,-p \mod (s+1))$$

In the corresponding bidirected container we have \ominus {s} $p =_{ ext{df}} - p \mod (s+1)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Takeaway

- The polynomial view reveals a symmetry between shapes/subshapes in a directed container.
- This makes specific constructions and specializations available for containers that are comonads.
- Directed container morphisms do not exhibit the same symmetry.
- Directed containers appear special in that, e.g., containers that are monads do not admit a comparably simple description.