Deciding Kleene Algebra Terms (In-)Equivalence in Coq

Nelma Moreira, David Pereira and Simão Melo de Sousa

Tallinn September 2016

Outline

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Table of Contents

Regular Expression (In-)Equivalence

- Implementation in Coq
- **Experimental Results**
- Deciding Relation Algebra Equations
- (In-)Equivalence of KAT terms
- Applications
- Conclusions and Future Work

ション ふゆ アメリア メリア しょうくの

Kleene Algebra

Idempotent semiring $(K, +, \cdot, 0, 1)$: x + x = x(1)x + 0 = x(2)(3)x + y = y + xx + (y + z) = (x + y) + z(4)0x = 0(5)x0 = 0(6)1x = x(7)x1 = x(8)x(yz) = (xy)z(9) x(y+z) = xy + xz(10)(x+y)z = xz + yz.(11)

Consider $x \le y \triangleq x + y = y$. Kleene Algebra (KA): $(K, +, \cdot, ^*, 0, 1)$ such that the sub-algebra $(K, +, \cdot, 0, 1)$ is an idempotent semiring and that the operator * is characterized by the following axioms:

$$1 + pp^{\star} \le p^{\star} \tag{12}$$

$$1 + p^{\star}p \le p^{\star} \tag{13}$$

$$q + pr \leq r \rightarrow p^{\star}q \leq r$$
 (14)

$$q + rp \leq r \rightarrow qp^{\star} \leq r$$
 (15)

Standard Model of KA: $(RL_{\Sigma}, \cup, \cdot, ^{\star}, \emptyset, \{\epsilon\})$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のくぐ

Regular expressions and Languages

Regular expression:

$$\alpha, \beta ::= \mathbf{0} \mid \mathbf{1} \mid \mathbf{a} \in \mathbf{\Sigma} \mid \alpha + \beta \mid \alpha\beta \mid \alpha^{\star}$$

Language denoted by a regular expression:

$$\begin{array}{cc} \mathcal{L}(0) = \emptyset & \mathcal{L}(1) = \{\epsilon\} & \mathcal{L}(a) = \{a\} \\ \mathcal{L}(\alpha + \beta) = \mathcal{L}(\alpha) \cup \mathcal{L}(\beta) & \mathcal{L}(\alpha\beta) = \mathcal{L}(\alpha)\mathcal{L}(\beta) & \mathcal{L}(\alpha^{\star}) = \mathcal{L}(\alpha)^{\star} \end{array}$$

Regular expression equivalence:

$$\alpha \sim \beta$$
 iff $\mathcal{L}(\alpha) = \mathcal{L}(\beta)$

Nullability:

$$\varepsilon(\alpha) = \begin{cases} \text{true} & \text{if } \epsilon \in \mathcal{L}(\alpha) \\ \text{false} & \text{if } \epsilon \notin \mathcal{L}(\alpha) \end{cases}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Partial Derivatives

• Definition of Partial Derivative wrt $a \in \Sigma$ [Mirkin,Antimirov]:

$$\begin{array}{rcl} \partial_a(0) &=& \emptyset\\ \partial_a(1) &=& \emptyset\\ \partial_a(b) &=& \left\{ \begin{array}{l} \{1\} & \text{if } a \equiv b\\ \emptyset & \text{otherwise} \end{array} \right.\\ \partial_a(\alpha + \beta) &=& \partial_a(\alpha) \cup \partial_a(\beta)\\ \partial_a(\alpha \beta) &=& \left\{ \begin{array}{l} \partial_a(\alpha)\beta \cup \partial_a(\beta) & \text{if } \varepsilon(\alpha) = \texttt{true},\\ \partial_a(\alpha)\beta & \text{otherwise.} \end{array} \right.\\ \partial_a(\alpha^*) &=& \partial_a(\alpha)\alpha^* \end{array}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Partial Derivatives (cont.)

Partial Derivatives wrt Words:

$$\begin{aligned} \partial_{\varepsilon}(\alpha) &= \{\alpha\} \\ \partial_{wa}(\alpha) &= \partial_{a}(\partial_{w}(\alpha)). \end{aligned}$$

▶ Language of Partial Derivative: $\mathcal{L}(\partial_a(\alpha)) = a^{-1}(\mathcal{L}(\alpha))$

► Example: $\partial_{abb}(ab^*) = \partial_b(\partial_b(\partial_a(ab^*))) = \partial_b(\partial_b(\partial_a(a)b^*))$ $= \partial_b(\partial_b(\{b^*\})) = \partial_b(\partial_b(b)b^*) = \partial_b(\{b^*\}) = \{b^*\}$

- An interesting consequence: $w \in \mathcal{L}(\alpha) \leftrightarrow \varepsilon(\partial_w(\alpha)) = \texttt{true}$
- Set of all Partial Derivatives: PD(α) = ⋃_{w∈Σ*}(∂_w(α))
- ► Finiteness of *PD* [Mirkin,Antimirov] : $PD(\alpha) \le |\alpha|_{\Sigma} + 1$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

(In-)Equivalence Through Iterated Derivation

$$\alpha \sim \varepsilon(\alpha) \cup \bigcup_{a \in \Sigma} a(\sum \partial_a(\alpha)) \tag{16}$$

If $\alpha\sim\beta,$ then by (16) :

$$\varepsilon(\alpha) \cup \bigcup_{a \in \Sigma} a(\sum \partial_a(\alpha)) \sim \varepsilon(\beta) \cup \bigcup_{a \in \Sigma} a(\sum \partial_a(\beta))$$
 (17)

By (17) and knowing that $w \in \mathcal{L}(\alpha) \leftrightarrow \varepsilon(\partial_w(\alpha)) = \text{true}$, we obtain:

$$(\forall w \in \Sigma^{\star}, \varepsilon(\partial_w(\alpha)) = \varepsilon(\partial_w(\beta))) \leftrightarrow \alpha \sim \beta.$$
(18)

 $\varepsilon(\partial_w(\alpha)) \neq \varepsilon(\partial_w(\beta))) \rightarrow \alpha \not\sim \beta$, for some $w \in \Sigma^*$. (19)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Procedure equivP

Require: $S = \{(\{\alpha\}, \{\beta\})\}, H = \emptyset$ **Ensure:** true or false

1: procedure EquivP(S, H) while $S \neq \emptyset$ do 2: 3: $(S_{\alpha}, S_{\beta}) \leftarrow POP(S)$ if $\varepsilon(S_{\alpha}) \neq \varepsilon(S_{\beta})$ then 4: 5: return false end if 6: 7: $H \leftarrow H \cup \{(S_{\alpha}, S_{\beta})\}$ for $a \in \Sigma$ do 8: $(S'_{\alpha}, S'_{\beta}) \leftarrow \partial_{a}(S_{\alpha}, S_{\beta})$ 9: if $(S'_{\alpha}, S'_{\beta}) \notin H$ then 10: $S \leftarrow S \cup \{(S'_{\alpha}, S'_{\beta})\}$ 11: 12: end if end for 13: end while 14: 15: return true

16: end procedure

- Construct a bisimulation that leads to (18) or finds a counter-example that prove that such a bisimulation does not exist (19).
- ► S: Derivatives yet to be processed
- *H*: Processed derivatives (*H* is finite)

ション ふゆ く 山 マ チャット しょうくしゃ

▶ if *false*, then counter-example

The Procedure equivP, an example

- Then $s_0 = (\{\alpha, \beta\}) = (\{(ab)^*a\}, \{a(ba)^*\})$
- We must show that equiv $P({s_0}, \emptyset) = true$.
- equivP for such α and β computes $s_1 = (\{1, b(ab)^*a\}, \{(ba)^*\})$ and $s_2 = (\emptyset, \emptyset)$.
- Execution traces:

i	Si	H _i	drvs.
0	${s_0}$	Ø	$\partial_a(s_0) = s_1, \partial_b(s_0) = s_2$
1	$\{s_1, s_2\}$	$\{s_0\}$	$\partial_a(s_1) = s_2, \partial_b(s_1) = s_0$
2	${s_2}$	$\{s_0, s_1\}$	$\partial_a(s_2) = s_2, \partial_b(s_2) = s_2$
3	Ø	$\{s_0, s_1, s_2\}$	true

Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Ingredient 1 : Representation of Derivatives

Derivatives as dependent records:

```
Record Drv (\alpha \beta:re) := mkDrv {
dp :> set re * set re ;
w : word ;
cw : dp = (\partial_w(\alpha), \partial_w(\beta))
}.
```

Example (Original regular expression)

```
Definition Drv_1st (\alpha \beta:re) : Drv \alpha \beta.
refine(mkDrv ({\alpha},{\beta}) \epsilon _).
abstract(reflexivity).
Defined.
```

ション ふゆ く 山 マ チャット しょうくしゃ

Ingredient 2 : Derivation of Drv terms

• Derivation of Drv terms wrt $a \in \Sigma$:

```
Definition Drv_pdrv(x:Drv \alpha \beta)(a:A) : Drv \alpha \beta.

refine(match x with

| mkDrv \alpha \beta p w H \Rightarrow

mkDrv \alpha \beta (pdrvp p a) (w++[a]) _

end).

abstract((* Proof of \partial_a(\partial_w(\alpha), \partial_w(\beta)) = (\partial_{wa}(\alpha), \partial_{wa}(\beta)) *)).

Defined.
```

Derivation of Drv terms wrt a set of symbols:

Definition Drv_pdrv_set(x:Drv $\alpha \beta$)(Sig:set A) : set (Drv $\alpha \beta$) := fold (fun a:A \Rightarrow add (Drv_pdrv $\alpha \beta$ x a)) Sig \emptyset .

Ignoring already existing derivatives in H:

Definition Drv_pdrv_set_filtered(x:Drv $\alpha \beta$) (H:set(Drv $\alpha \beta$))(sig:set A):set (Drv $\alpha \beta$) := filter (fun $y \Rightarrow$ negb ($y \in H$)) (Drv_pdrv_set x sig).

Ingredient 3 : One Step of Computation

- proceed: continue the iterative process;
- termtrue: the procedure must terminate and use the parameter as a witness of equivalence;
- termfalse: the procedure must terminate and use the parameter as a counter-example of equivalence.

```
(*step = lines 8-13, for loop of EquivP*)
Definition step (H S:set (Drv \alpha \beta))(sig:set A) :
 ((set (Drv \alpha\beta) * set (Drv \alpha \beta)) * step_case \alpha \beta) :=
 match choose s with
 |None \Rightarrow ((H,S),termtrue \alpha \beta H)
 |Some (S_{\alpha}, S_{\beta}) \Rightarrow
    if c_of_Drv _ (S_{\alpha}, S_{\beta}) then
     let H' := \text{add} (S_{\alpha}, S_{\beta}) H in
      let S' := \text{remove } (S_{\alpha}, S_{\beta}) S in
        let ns := Drv_pdrv_set_filtered \alpha \beta (S_{\alpha}, S_{\beta}) H' sig in
         ((H', ns \cup S'), proceed \alpha \beta)
    else
     ((H,S), \text{termfalse } \alpha \ \beta \ (S_{\alpha}, S_{\beta}))
 end.
                                                                         ション ふゆ アメリア メリア しょうくの
```

Ingredient 4 : Termination

Considering

step $\alpha \ \beta \ H \ S = ((H', S'), \text{proceed } \alpha \ \beta)$ and

$$S \cap H = \emptyset$$

the termination is ensured by:

 $(2^{(|\alpha|_{\Sigma}+1)} \times 2^{(|\beta|_{\Sigma}+1)} + 1) - |H'| < (2^{(|\alpha|_{\Sigma}+1)} \times 2^{(|\beta|_{\Sigma}+1)} + 1) - |H|$

Ingredient 4 : Main function

▶ iterator :

```
Function iterate(\alpha \ \beta:re)(H \ S:set (Drv \alpha \ \beta))
(sig:set A)(D:DP \alpha \ \beta h s){wf (LLim \alpha \ \beta) H}:
term_cases \alpha \ \beta :=
let ((H', S', next) := step H \ S in
match next with
|termfalse x \Rightarrow NotOk \alpha \ \beta x
|termtrue h \Rightarrow Ok \alpha \ \beta h
|progress \Rightarrow iterate \alpha \ \beta \ H' \ S' sig (DP_upd \alpha \ \beta \ H \ S
sig D)
end.
```

where DP is defined as

Inductive DP (h s:set (Drv $\alpha \beta$)) : Prop := | is_dpt : h \cap s = $\emptyset \rightarrow \varepsilon$ (h) = true \rightarrow DP h s.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The function equivP

wrap iterate into a Boolean function:

```
Definition equivP_aux(\alpha \ \beta:re)(H \ S:set(Drv \ \alpha \ \beta))
(sig:set A)(D:DP \alpha \ \beta \ H \ S):=
let H' := iterate \alpha \ \beta \ H \ S \ sig \ D in
match H' with
| Ok _ \Rightarrow true
| NotOk _ \Rightarrow false
end.
```

instantiate with the correct arguments:

```
Definition equivP (\alpha \ \beta:re) :=
equivP_aux \alpha \ \beta \ \emptyset {Drv_1st \alpha \ \beta} (setSy \alpha \cup setSy \beta)
(mkDP_ini \alpha \ \beta).
```

Correctness

1. this only happens when :

iterate
$$H S = \text{NotOk} \alpha \beta (S_{\alpha}, S_{\beta})$$

2. which means that:

step
$$H' S' = \texttt{termfalse} \ \alpha \ \beta \ (S_{\alpha}, S_{\beta})$$

3. be definition of step we know that:

$$arepsilon(\mathcal{S}_{lpha})
eq arepsilon(\mathcal{S}_{eta})$$

4. thus:

 $\alpha \not\sim \beta$

Correctness

1. define the following invariant:

 $\mathit{INV}(H,S) =_{\mathit{def}} \forall x, \ x \in H \rightarrow \forall a \in \Sigma, \ \partial_a(x) \in S \cup H$

2. prove that it holds for step:

 $\mathit{INV}(\mathit{H}, \mathit{S})
ightarrow \mathtt{step} \; \mathit{H} \; \mathit{S} = ((\mathit{H}', \mathit{S}'), \mathtt{proceed})
ightarrow \mathit{INV}(\mathit{H}', \mathit{S}')$

3. prove that all derivatives are computed :

 $INV(H,S) \rightarrow \texttt{iterate} \ H \ S \ = \texttt{Ok} \ _ \ H' \rightarrow INV(H',\emptyset)$

4. prove that all derivatives (S_{α}, S_{β}) verify $\varepsilon(S_{\alpha}) = \varepsilon(S_{\beta})$

- 5. thus we obtain $\forall w \in \Sigma^*, \varepsilon(\partial_w(\alpha)) = \varepsilon(\partial_w(\beta)))$
- 6. from which follows $\alpha \sim \beta$

Obtained by trivial case analysis:

• $\alpha \sim \beta$:

1. if equivP $\alpha \; \beta = \texttt{true}$: trivial from correctness proof;

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

2. if equivP $\alpha \beta = \texttt{false}$: contradiction

• $\alpha \not\sim \beta$: by similar reasoning

The Reflexive Tactic

From the soundness results we were able to construct the following tactic:

```
Ltac re_equiv :=
 apply equiv_re_true; vm_compute;
  first [ reflexivity | fail 2 "Regular expressions are not
       equivalent" ].
Ltac re_inequiv :=
 apply equiv_re_false;vm_compute;
  first [ reflexivity | fail 2 "Regular expressions not
       inequivalent" ].
Ltac dec_re :=
 match goal with
 | |- \mathcal{L}(?R1) \sim \mathcal{L}(?R2) \Rightarrow re_equiv
 | | - \mathcal{L}(?R1) \not\sim \mathcal{L}(?R2) \Rightarrow re_inequiv
 | | - \mathcal{L}(?R1) < \mathcal{L}(?R2) \Rightarrow
    unfold lleq; change (\mathcal{L}(R1) \cup \mathcal{L}(R2)) with (\mathcal{L}(R1 + R2));
      re_equiv
 | |- ] \Rightarrow fail 2 "Not a regular expression (in-)equivalence
      equation."
 end.
```

Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Performance

Some indicators (10000 pairs of uniform, randomly generated regular expressions):

- $|\alpha| = 25$ and 10 symbols : 0.142 (eq) and 0.025 (ineq)
- $|\alpha| = 50$ and 20 symbols : 0.446 (eq) and 0.060 (ineq)
- $|\alpha| = 100$ and 30 symbols : 1.142s (eq) and 0.112s (ineq)
- $|\alpha| = 250$ and 40 symbols : 5.142s (eq) and 0.147s (ineq)
- $|\alpha| = 1000$ and 50 symbols : 46.037s (eq) and 0.280 (ineq)

alg./(k, n)	(20, 200)		(50, 500)		(50, 1000)	
	eq	ineq	eq	ineq	eq	ineq
equivP	2.211	0.048	9.957	0.121	17.768	0.149
ATBR	3.001	1.654	5.876	2.724	16.682	12.448

Table: Comparison of the performances (ATBR - Braibant & Pous).

Regular expression generated using the FAdo toolbox: http://http://fado.dcc.fc.up.pt/

Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Relations vs. Regular expressions

Claim: Equations over relation can be decided using regular expressions

First ingredient:

Fixpoint reRel(v:nat \rightarrow relation B)(α :re) : relation B := match r with | 0 \Rightarrow EmpRel | 1 \Rightarrow IdRel | 'a \Rightarrow v a | x + y \Rightarrow UnionRel (reRel v x) (reRel v y) | x \cdot y \Rightarrow CompRel (reRel v x) (reRel v y) | x^{*} \Rightarrow TransRefl (reRel v x) end.

Example

Consider:

- Σ = {a, b},
- ► *R_a* and *R_b* : binary relations over B,
- a regular expression $\alpha = a(b+1)$
- ▶ v: a function that maps a to the relation R_a, and b to the relation R_b.
- The computation of reRel α v gives the relation R_a ∘ (R_b ∪ I), and can be described as follows:

$$\begin{aligned} reRel \ \alpha \ v &= reRel(a(b+1)) \ v \\ &= CompRel(reRel \ a \ v)(reRel \ (b+1) \ v) \\ &= CompRel \ R_a \ (reRel \ (b+1) \ v) \\ &= CompRel \ R_a \ (UnionRel \ (reRel \ b \ v)(reRel \ 1 \ v)) \\ &= CompRel \ R_a \ (UnionRel \ R_b(reRel \ 1 \ v)) \\ &= CompRel \ R_a \ (UnionRel \ R_b \ IdRel). \\ &(\ = R_a \circ (R_b \cup \mathcal{I}) \) \end{aligned}$$

ション ふゆ く 山 マ チャット しょうくしゃ

From Regular Expressions to Relations and back

$$\alpha \sim \beta \quad \rightarrow \quad \text{reRel } \mathbf{v} \ \alpha \sim_{\mathcal{R}} \text{reRel } \mathbf{v} \ \beta$$

This theorem allows for

► the design of a Coq tactic that transforms a goal of the form reRel v α ~_R reRel v β into a goal stating that α ~ β

ション ふゆ く 山 マ チャット しょうくしゃ

 and then applies the tactic for regular expressions (in-)equivalence to close the proof.

Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Kleene Algebra with tests

Kleene Algebra with tests (KAT): KA extended with a boolean algebra $(K, T, +, \cdot, *, -, 0, 1)$ such that

- ► (T, +, ·, ⁻, 0, 1) is a Boolean algebra
- $T \subseteq K$
- ► KAT satisfies the axioms of KA and the axioms of Boolean algebra, that is, the set of axioms (1–15) and the following ones, for b, c, d ∈ T:

$$bc = cb$$
 (20)

$$b + (cd) = (b+c)(b+d) \quad (21)$$

$$b+c=b\overline{c} \tag{22}$$

$$b + \overline{b} = 1 \tag{23}$$

$$bb = b \tag{24}$$

$$b + 1 = 1$$
 (25)

$$b+0=b \tag{26}$$

$$\overline{bc} = \overline{b} + \overline{c} \tag{27}$$

$$b\overline{b} = 0 \tag{28}$$

 $\overline{\overline{b}} = b$ (29)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Why formalizing Kleene Algebra with tests?

- ► Tests embedded in expressions → encoding of imperative program constructions
- ► KAT :
 - KAT subsumes (can encode) PHL;
 - Capture and verify properties of simple imperative programs. An equational way to deal with partial correctness and program equivalence.
- Consequently, proving that a given program C is partially correct using the deductive system of PHL can be reduced to checking if C is partially correct by equational reasoning in KAT.
- Moreover, some formulas of KAT can be reduced to standard equalities and the equalities can be decided automatically.

KAT terms

- ▶ B = {b₁,..., b_n}: set of primitive tests
- $\bullet \ \overline{\mathcal{B}} = \{\overline{b} \mid b \in \mathcal{B}\}.$
- $I \in \mathcal{B} \cup \overline{\mathcal{B}}$ is called a *literal*.
- An atom α is a finite sequence of literals l₁l₂...l_n, such that each l_i is either b_i or b_i, for 1 ≤ i ≤ n, where n = |B|.
- At: set of atoms
- $\alpha \leq b \triangleq \alpha \rightarrow b$ is a propositional tautology (with $\alpha \in At$ and $b \in B$,).

- tests are booleans expressions inductively defined by:
 - 0 and 1 are tests
 - if $b \in \mathcal{B}$ then b is a test
 - if t_1 and t_2 are tests then $t_1 + t_2$, $t_1 \cdot t_2$, and $\overline{t_1}$ are tests
- KAT terms = KA terms (i.e. regular expressions) + tests, inductively defined by:
 - a test t is a KAT term
 - if $p \in \Sigma$ then p is a KAT term
 - if e_1 and e_2 are KAT terms, then so are $e_1 + e_2$, e_1e_2 , and e_1^* .

ション ふゆ く 山 マ チャット しょうくしゃ

Guarded Strings

• A guarded string is a sequence $x = \alpha_0 p_0 \alpha_1 p_1 \dots p_{(n-1)} \alpha_n$, with $\alpha_i \in At$ and $p_i \in \Sigma$.

Regular Languages	Language Theoretic Model of KAT		
word	guarded string		
regular expression	KAT Term		
concatenation	fusion of compatible guarded string		
Languages	set of guarded strings		

ϵ_α defined by induction: ϵ_α(p) = false, ϵ_α(e^{*}) = true,
ϵ_α(t) = true if α ≤ t, ϵ_α(t) = false otherwise,
ϵ_α(e₁ + e₂) = ϵ_α(e₁) ∨ ϵ_α(e₂), ϵ_α(e₁e₂) = ϵ_α(e₁) ∧ ϵ_α(e₂)

E(e) is defined by {α ∈ At | ϵ_α(e) = true}

Kleene Algebra with tests

Let $\alpha p \in (At \cdot \Sigma)$ and let *e* be a KAT term. The set $\partial_{\alpha p}(e)$ of partial derivatives of *e* with respect to αp is inductively defined by

$$\begin{array}{lll} \partial_{\alpha p}(t) &=& \emptyset \\ \\ \partial_{\alpha p}(q) &=& \begin{cases} \{1\} & \text{if } p \equiv q, \\ \emptyset & \text{otherwise.} \end{cases} \\ \partial_{\alpha p}(e_1 + e_2) &=& \partial_{\alpha p}(e_1) \cup \partial_{\alpha p}(e_2) \\ \\ \partial_{\alpha p}(e_1 e_2) &=& \begin{cases} \partial_{\alpha p}(e_1)e_2 \cup \partial_{\alpha p}(e_2) & \text{if } \varepsilon_{\alpha}(e_1) = \texttt{true}, \\ \partial_{\alpha p}(e_1)e_2, & \text{otherwise.} \end{cases} \\ \partial_{\alpha p}(e^{\star}) &=& \partial_{\alpha p}(e)e^{\star} \end{cases}$$

KAT Partial derivatives for words $w \in (At \cdot \Sigma)^*$, inductively by $\partial_{\epsilon}(e) = \{e\}$, and $\partial_{w\alpha p}(e) = \partial_{\alpha p}(\partial_w(e))$. The (proven finite) set of all partial derivatives of a KAT term is the set

$$\partial_{(\operatorname{At}\cdot\Sigma)^{\star}}(e) = \bigcup_{w \in (\operatorname{At}\cdot\Sigma)^{\star}} \{e' \mid e' \in \partial_w(e)\}$$

An Example

Example

Let $\mathcal{B} = \{b_1, b_2\}$, $\Sigma = \{p, q\}$, and $e = b_1 p (b_1 + b_2) q$. The partial derivative of *e* with respect to the sequence $b_1 b_2 p \overline{b_1} b_2 q$ is the following:

$$\begin{split} \partial_{b_1 b_2 p \overline{b_1} b_2 q}(e) &= \partial_{b_1 b_2 p \overline{b_1} b_2 q}(b_1 p (b_1 + b_2) q) \\ &= \partial_{\overline{b_1} b_2 q}(\partial_{b_1 b_2 p} (b_1 p (b_1 + b_2) q)) \\ &= \partial_{\overline{b_1} b_2 q}(\partial_{b_1 b_2 p} (b_1) (p (b_1 + b_2) q)) \cup \partial_{b_1 b_2 p} (p (b_1 + b_2) q)) \\ &= \partial_{\overline{b_1} b_2 q}(\partial_{b_1 b_2 p} (b_1) (p (b_1 + b_2) q)) \cup \partial_{\overline{b_1} b_2 q}(\partial_{b_1 b_2 p} (p (b_1 + b_2) q)) \\ &= \partial_{\overline{b_1} b_2 q}(\partial_{b_1 b_2 p} (p) (b_1 + b_2) q) \\ &= \partial_{\overline{b_1} b_2 q}((b_1 + b_2) q) \\ &= \partial_{\overline{b_1} b_2 q}((b_1 + b_2) q) \cup \partial_{\overline{b_1} b_2 q}(q) \\ &= \partial_{\overline{b_1} b_2 q}(q) \\ &= \{1\}. \end{split}$$

A Procedure for KAT Terms Equivalence

Let e be a KAT term,

$$e \sim \mathsf{E}(e) \cup \Bigg(\bigcup_{\alpha p \in (\mathsf{At} \cdot \Sigma)} \alpha p \partial_{\alpha p}(e) \Bigg).$$

Therefore, if e_1 and e_2 are KAT terms, we can reformulate the equivalence $e_1 \sim e_2$ as

$$\mathsf{E}(e_1) \cup \left(\bigcup_{\alpha p \in (\mathsf{At} \cdot \Sigma)} \alpha p \partial_{\alpha p}(e_1)\right) \sim \mathsf{E}(e_2) \cup \left(\bigcup_{\alpha p \in (\mathsf{At} \cdot \Sigma)} \alpha p \partial_{\alpha p}(e_2)\right),$$

which is tantamount at checking that $\forall \alpha \in At$, $\varepsilon_{\alpha}(e_1) = \varepsilon_{\alpha}(e_2)$ and $\forall \alpha p \in (At \cdot \Sigma), \ \partial_{\alpha p}(e_1) \sim \partial_{\alpha p}(e_2)$ hold.

A Procedure for KAT Terms Equivalence

We can finitely iterate over the previous equations and reduce the (in)equivalence of e_1 and e_2 to one of the next equivalences:

$$e_{1} \sim e_{2} \; \leftrightarrow \; \forall \alpha \in \mathsf{At}, \forall w \in (\mathsf{At} \cdot \Sigma)^{\star}, \varepsilon_{\alpha}(\partial_{w}(e_{1})) = \varepsilon_{\alpha}(\partial_{w}(e_{2})) \quad (30)$$

and

$$\mathbf{e}_{1} \not\sim \mathbf{e}_{2} \leftrightarrow (\exists w \exists \alpha, \varepsilon_{\alpha}(\partial_{w}(\mathbf{e}_{1})) \neq \varepsilon_{\alpha}(\partial_{w}(\mathbf{e}_{2}))).$$
(31)

The procedure equivKAT

```
Require: S = \{(\{e_1\}, \{e_2\})\}, H = \emptyset
Ensure: true or false
```

1:	procedure EquivKAT(S, H)
2:	while $S \neq \emptyset$ do
3:	$(\Gamma, \Delta) \leftarrow POP(S)$
4:	for $\alpha \in At do$
5:	if $\varepsilon_{\alpha}(\Gamma) \neq \varepsilon_{\alpha}(\Delta)$ then
6:	return false
7:	end if
8:	end for
9:	$H \leftarrow H \cup \{(\Gamma, \Delta)\}$
10:	for $\alpha p \in (At \cdot \Sigma)$ do
11:	$(\Lambda, \Theta) \leftarrow \partial_{lpha p}(\Gamma, \Delta)$
12:	if $(\Lambda, \Theta) \not\in H$ then
13:	$\mathcal{S} \leftarrow \mathcal{S} \cup \{(\Lambda, \Theta)\}$
14:	end if
15:	end for
16:	end while
17:	return true
18:	end procedure

lines 4-8 and 10-15 : exponential behavior

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Formally proved terminating and correct
- COQ tactic based on equivKAT

Example

Let $\mathcal{B} = \{b\}$ and let $\Sigma = \{p\}$, are $e_1 = (pb)^*p$ and $e_2 = p(bp)^*$ equivalent? Consider $s_0 = (\{(pb)^*p\}, \{p(bp)^*\})$, it is enough to show that equivKAT $(\{s_0\}, \emptyset) = \texttt{true}$.

The first step of the computation generates the two new following pairs of derivatives:

$$\begin{aligned} \partial_{bp}(e_1, e_2) &= (\{1, b(pb)^*\}, \{(bp)^*\}), \\ \partial_{\overline{b}p}(e_1, e_2) &= (\{1, b(pb)^*\}, \{(bp)^*\}). \end{aligned}$$

Then, (e_1, e_2) is added to the historic set H and the next iteration of equivKAT considers $S = \{s_1\}$, with $s_1 = (\{1, b(pb)^*\}, \{(bp)^*\})$, and $H = \{s_0\}$.

$$\begin{aligned} \partial_{bp}(\{1, b(pb)^*\}, \{(bp)^*\}) &= (\{b(pb)^*\}, \{(bp)^*\}), \\ \partial_{\overline{b}p}(\{1, b(pb)^*\}, \{(bp)^*\}) &= (\emptyset, \emptyset). \end{aligned}$$

The next iteration of the procedure will have $S = \{s_2, s_3\}$ and $H = \{s_0, s_1\}$, with $s_2 = (\{b(pb)^*\}, \{(bp)^*\})$ and $s_3 = (\emptyset, \emptyset)$. Since the derivative of s_2 is either s_2 or s_3 and since the same holds for the derivatives of s_3 , the procedure will terminate in two iterations with $S = \emptyset$ and $H = \{s_0, s_1, s_2, s_3\}$. Hence, we conclude that $e_1 \sim e_2$.

Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

ション ふゆ く 山 マ チャット しょうくしゃ

Program Equivalence

if e_1 and e_2 are terms encoding the IMP programs C_1 and C_2 , and if the Boolean test *B* is encoded by the KAT test *t*, then we can encode sequence, conditional instructions and while loops in KAT as follows.

> $C_1; C_2 \triangleq e_1 e_2,$ if B then C_1 else C_2 fi $\triangleq (te_1 + \overline{t}e_2),$ while B do C_1 end $\triangleq (te_1)^* \overline{t}.$

> > ション ふゆ く 山 マ チャット しょうくしゃ

Example

Let $\mathcal{B} = \{b, c\}$ and $\Sigma = \{p, q\}$ be the set of primitive tests and set of primitive programs, respectively, and let *P*1 and *P*2 be the following two programs:

 $P_1 \triangleq$ while B do C_1 ; while B' do C_2 end end $P_2 \triangleq$ if B then C_1 ; while B + B' do if B' then C_2 else C_1 fi end else skipfi

Let $C_1 = p$, $C_2 = q$, B = b and B' = c. The programs P_1 and P_2 are encoded in KAT as

 $e_1 = (bp((cq)^*\overline{c}))^*\overline{b}$ and $e_2 = bp((b+c)(cq+\overline{c}p))^*\overline{(b+c)} + \overline{b}$,

respectively. The procedure decides the equivalence $e_1 \sim e_2$ in 0.053 seconds.

Program Correctness

This methodology can be extended in order to encode a non trivial subset of Hoare Logic and allows *classical* program verification based on contracts (pre-post condition, invariants).

Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Main conclusions and results

- efficient procedure to decide regular expression equivalence ;
- able to solve equations involving relations ;
- a simple extension to decide KAT terms equivalence.
- Application to program verification, but mainly program equivalence
- Extraction to Caml

- Improve the performance of *equivKAT* in order to handle bigger (in)-equivalences (on-going work)
- Extension to Schematic Kleene Algebra with test (widening the actual HL coverage)
- Modal (and concurrent) Kleene Algebra (Equivalence for parallel or concurrent Programs, timing behavior)
- Embedding into program verification frameworks (why3, etc...)
- Application Runtime Verification (e.g. of Ada/Spark programs) (ongoing work)

Thank you!

◆□ > < 個 > < E > < E > E 9 < 0</p>

supplementary slides

◆□ > < 個 > < E > < E > E 9 < 0</p>

Finiteness of Partial Derivatives

Recursive definition of PD via support [Champarnaud and Ziadi]:

$$\pi(\emptyset) = \emptyset$$

$$\pi(\varepsilon) = \emptyset$$

$$\pi(a) = \{1\}$$

$$\pi(\alpha + \beta) = \pi(\alpha) \cup \pi(\beta)$$

$$\pi(\alpha\beta) = \pi(\alpha)\beta \cup \pi(\beta)$$

$$\pi(\alpha^*) = \pi(\alpha)\alpha^*$$

Another way of looking at *PD*:

$$PD(\alpha) = \{\alpha\} \cup \pi(\alpha)$$

Again, the upper bound of *PD*:

 $|\pi(\alpha)| \le |\alpha|_{\Sigma}$ $|PD(\alpha)| \le |\alpha|_{\Sigma} + 1$