Deciding Kleene Algebra Terms (In-)Equivalence in Coq

Nelma Moreira, David Pereira and Simão Melo de Sousa

Tallinn
September 2016
Outline

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work
Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work
Kleene Algebra

Idempotent semiring

\((K, +, \cdot, 0, 1)\):

1. \(x + x = x\) \hspace{1cm} (1)
2. \(x + 0 = x\) \hspace{1cm} (2)
3. \(x + y = y + x\) \hspace{1cm} (3)
4. \(x + (y + z) = (x + y) + z\) \hspace{1cm} (4)
5. \(0x = 0\) \hspace{1cm} (5)
6. \(x0 = 0\) \hspace{1cm} (6)
7. \(1x = x\) \hspace{1cm} (7)
8. \(x1 = x\) \hspace{1cm} (8)
9. \(x(yz) = (xy)z\) \hspace{1cm} (9)
10. \(x(y + z) = xy + xz\) \hspace{1cm} (10)
11. \((x + y)z = xz + yz\) \hspace{1cm} (11)

Consider \(x \leq y \triangleq x + y = y\).

Kleene Algebra (KA): \((K, +, \cdot, *, 0, 1)\) such that the sub-algebra \((K, +, \cdot, 0, 1)\) is an idempotent semiring and that the operator * is characterized by the following axioms:

1. \(1 + pp^* \leq p^*\) \hspace{1cm} (12)
2. \(1 + p^*p \leq p^*\) \hspace{1cm} (13)
3. \(q + pr \leq r \rightarrow p^*q \leq r\) \hspace{1cm} (14)
4. \(q + rp \leq r \rightarrow qp^* \leq r\) \hspace{1cm} (15)

Standard Model of KA: \((\mathbb{RL}_\Sigma, \cup, \cdot, *, \emptyset, \{\epsilon\})\)
Regular expressions and Languages

- Regular expression:

\[\alpha, \beta ::= 0 \mid 1 \mid a \in \Sigma \mid \alpha + \beta \mid \alpha \beta \mid \alpha^* \]

- Language denoted by a regular expression:

\[
\begin{align*}
\mathcal{L}(0) &= \emptyset \\
\mathcal{L}(1) &= \{\epsilon\} \\
\mathcal{L}(a) &= \{a\} \\
\mathcal{L}(\alpha + \beta) &= \mathcal{L}(\alpha) \cup \mathcal{L}(\beta) \\
\mathcal{L}(\alpha \beta) &= \mathcal{L}(\alpha) \mathcal{L}(\beta) \\
\mathcal{L}(\alpha^*) &= \mathcal{L}(\alpha)^*
\end{align*}
\]

- Regular expression equivalence:

\[\alpha \sim \beta \text{ iff } \mathcal{L}(\alpha) = \mathcal{L}(\beta) \]

- Nullability:

\[\varepsilon(\alpha) = \begin{cases}
\text{true} & \text{if } \epsilon \in \mathcal{L}(\alpha) \\
\text{false} & \text{if } \epsilon \notin \mathcal{L}(\alpha)
\end{cases} \]
Definition of Partial Derivative wrt $a \in \Sigma$ [Mirkin, Antimirov]:

\[
\begin{align*}
\partial_a(0) &= \emptyset \\
\partial_a(1) &= \emptyset \\
\partial_a(b) &= \begin{cases}
\{1\} & \text{if } a \equiv b \\
\emptyset & \text{otherwise}
\end{cases} \\
\partial_a(\alpha + \beta) &= \partial_a(\alpha) \cup \partial_a(\beta) \\
\partial_a(\alpha\beta) &= \begin{cases}
\partial_a(\alpha)\beta \cup \partial_a(\beta) & \text{if } \varepsilon(\alpha) = \text{true}, \\
\partial_a(\alpha)\beta & \text{otherwise}.
\end{cases} \\
\partial_a(\alpha^*) &= \partial_a(\alpha)\alpha^*
\end{align*}
\]
Partial Derivatives (cont.)

- Partial Derivatives wrt Words:
 \[
 \partial_\varepsilon(\alpha) = \{\alpha\} \\
 \partial_{wa}(\alpha) = \partial_a(\partial_w(\alpha)).
 \]

- Language of Partial Derivative: \(\mathcal{L}(\partial_a(\alpha)) = a^{-1}(\mathcal{L}(\alpha))\)

- Example:
 \[
 \partial_{abb}(ab^*) = \partial_b(\partial_b(\partial_a(ab^*))) = \partial_b(\partial_b(\partial_a(a)b^*)) \\
 = \partial_b(\partial_b(\{b^*\})) = \partial_b(\partial_b(b)b^*) = \partial_b(\{b^*\}) = \{b^*\}
 \]

- An interesting consequence: \(w \in \mathcal{L}(\alpha) \iff \varepsilon(\partial_w(\alpha)) = \text{true}\)

- Set of all Partial Derivatives: \(PD(\alpha) = \bigcup_{w \in \Sigma^*}(\partial_w(\alpha))\)

- Finiteness of \(PD\) [Mirkin,Antimirov]: \(PD(\alpha) \leq |\alpha|_{\Sigma} + 1\)
(In-)Equivalence Through Iterated Derivation

\[\alpha \sim \varepsilon(\alpha) \cup \bigcup_{a \in \Sigma} a(\sum \partial_a(\alpha)) \]

(16)

If \(\alpha \sim \beta \), then by (16):

\[\varepsilon(\alpha) \cup \bigcup_{a \in \Sigma} a(\sum \partial_a(\alpha)) \sim \varepsilon(\beta) \cup \bigcup_{a \in \Sigma} a(\sum \partial_a(\beta)) \]

(17)

By (17) and knowing that \(w \in \mathcal{L}(\alpha) \leftrightarrow \varepsilon(\partial_w(\alpha)) = \text{true} \), we obtain:

\[(\forall w \in \Sigma^*, \varepsilon(\partial_w(\alpha)) = \varepsilon(\partial_w(\beta))) \leftrightarrow \alpha \sim \beta. \]

(18)

\[\varepsilon(\partial_w(\alpha)) \neq \varepsilon(\partial_w(\beta))) \rightarrow \alpha \not\sim \beta, \text{ for some } w \in \Sigma^*. \]

(19)
The Procedure equivP

Require: \(S = \{ (\{\alpha\}, \{\beta\}) \}, \ H = \emptyset \)
Ensure: true or false

1: procedure EquivP\((S, H)\)
2: while \(S \neq \emptyset \) do
3: \((S_\alpha, S_\beta) \leftarrow \text{POP}(S)\)
4: if \(\varepsilon(S_\alpha) \neq \varepsilon(S_\beta) \) then
5: return false
6: end if
7: \(H \leftarrow H \cup \{ (S_\alpha, S_\beta) \} \)
8: for \(a \in \Sigma \) do
9: \((S'_\alpha, S'_\beta) \leftarrow \partial_a(S_\alpha, S_\beta)\)
10: if \((S'_\alpha, S'_\beta) \notin H \) then
11: \(S \leftarrow S \cup \{ (S'_\alpha, S'_\beta) \} \)
12: end if
13: end for
14: end while
15: return true
16: end procedure

- Construct a bisimulation that leads to (18) or finds a counter-example that prove that such a bisimulation does not exist (19).
- \(S \): Derivatives yet to be processed
- \(H \): Processed derivatives (\(H \) is finite)
- if false, then counter-example
Consider $\alpha = (ab)^*a$ and $\beta = a(ba)^*$. Then $s_0 = (\{\alpha, \beta\}) = (\{(ab)^*a\}, \{a(ba)^*\})$. We must show that $\text{equivP}(\{s_0\}, \emptyset) = \text{true}$.

equivP for such α and β computes $s_1 = (\{1, b(ab)^*a\}, \{(ba)^*\})$ and $s_2 = (\emptyset, \emptyset)$.

Execution traces:

<table>
<thead>
<tr>
<th>i</th>
<th>S_i</th>
<th>H_i</th>
<th>drvs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>${s_0}$</td>
<td>\emptyset</td>
<td>$\partial_a(s_0) = s_1, \partial_b(s_0) = s_2$</td>
</tr>
<tr>
<td>1</td>
<td>${s_1, s_2}$</td>
<td>${s_0}$</td>
<td>$\partial_a(s_1) = s_2, \partial_b(s_1) = s_0$</td>
</tr>
<tr>
<td>2</td>
<td>${s_2}$</td>
<td>${s_0, s_1}$</td>
<td>$\partial_a(s_2) = s_2, \partial_b(s_2) = s_2$</td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>${s_0, s_1, s_2}$</td>
<td>true</td>
</tr>
</tbody>
</table>
Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work
Ingredient 1: Representation of Derivatives

- Derivatives as dependent records:

  ```plaintext
  Record Ddrv (α β:re) := mkDrv {
    dp :> set re * set re ;
    w : word ;
    cw : dp = (∂_w(α),∂_w(β))
  }.
  ```

Example (Original regular expression)

```plaintext
Definition Ddrv_1st (α β:re) : Ddrv α β.
refine(mkDrv ({α},{β}) ε _).
abstract(reflexivity).
Defined.
```
Ingredient 2 : Derivation of Drv terms

- Derivation of Drv terms wrt $a \in \Sigma$:

 Definition Drv_pdrv(x:Drv α β)(a:A) : Drv α β.

 `refine(match x with
 | mkDrv α β p w H ⇒
 mkDrv α β (pdrvp p a) ($w++[a]$) _
 end).

 abstract((* Proof of $\partial_a(\partial_w(\alpha),\partial_w(\beta)) = (\partial_{wa}(\alpha),\partial_{wa}(\beta))$ *))

 Defined.

- Derivation of Drv terms wrt a set of symbols:

 Definition Drv_pdrv_set(x:Drv α β)(Sig:set A) : set (Drv α β) :=

 fold (fun a:A ⇒ add (Drv_pdrv α β x a)) Sig \emptyset.

- Ignoring already existing derivatives in H:

 Definition Drv_pdrv_set_filtered(x:Drv α β)

 $(H:set(Drv α β))(sig:set A):set (Drv α β) :=

 filter (fun y ⇒ negb (y \in H)) (Drv_pdrv_set_set x sig).
Ingredient 3 : One Step of Computation

Inductive step_case (α β:re) : Type :=
|proceed : step_case α β
|termtrue : set (Drv α β) → step_case α β
|termfalse : Drv α β → step_case α β.

▶ proceed: continue the iterative process;
▶ termtrue: the procedure must terminate and use the parameter as a witness of equivalence;
▶ termfalse: the procedure must terminate and use the parameter as a counter-example of equivalence.

(*step = lines 8-13, for loop of EquivP*)

Definition step (H S:set (Drv α β))(sig:set A) :
((set (Drv α β) * set (Drv α β)) * step_case α β) :=
match choose s with
|None ⇒ ((H,S),termtrue α β H)
|Some (Sα,Sβ) ⇒
 if c_of_Drv _ _ (Sα,Sβ) then
 let H' := add (Sα,Sβ) H in
 let S' := remove (Sα,Sβ) S in
 let ns := Drv_pdrv_set_filtered α β (Sα,Sβ) H' sig in
 ((H',ns ∪ S'),proceed α β)
 else
 ((H,S),termfalse α β (Sα,Sβ))
end.
Ingredient 4: Termination

- Considering

 \[
 \text{step } \alpha \beta H S = ((H', S'), \text{proceed } \alpha \beta)
 \]

 and

 \[
 S \cap H = \emptyset
 \]

- The termination is ensured by:

 \[
 (2^{(|\alpha|_\Sigma + 1)} \times 2^{(|\beta|_\Sigma + 1) + 1}) - |H'| < (2^{(|\alpha|_\Sigma + 1)} \times 2^{(|\beta|_\Sigma + 1) + 1}) - |H|
 \]
Ingredient 4: Main function

- **iterator**:

  ```plaintext
  Function iterate(α β:re)(H S:set (Drv α β))(sig:set A)(D:DP α β h s){wf (LLim α β) H}:
  
  term_cases α β :=
  let ((H',S',next) := step H S in
  match next with
  |termfalse x ⇒ NotOk α β x
  |termtrue h ⇒ Ok α β h
  |progress ⇒ iterate α β H' S' sig (DP_upd α β H S sig D)
  
  end.
  
  where DP is defined as
  
  Inductive DP (h s:set (Drv α β)) : Prop :=
  | is_dpt : h ∩ s = ∅ → ε(h) = true → DP h s.
  ```
The function equivP

- wrap iterate into a Boolean function:

\[
\text{Definition equivP_aux}(\alpha \beta:\text{re})(H\ S:\text{set(Drv }\alpha \beta)) (\text{sig:} \text{set } A)(D:\text{DP }\alpha \beta \ H \ S) := \\
\text{let } H' := \text{iterate } \alpha \beta \ H \ S \ \text{sig } D \ \text{in} \\
\text{match } H' \text{ with} \\
\mid \text{Ok } _ \Rightarrow \text{true} \\
\mid \text{NotOk } _ \Rightarrow \text{false} \\
\text{end.}
\]

- instantiate with the correct arguments:

\[
\text{Definition equivP } (\alpha \beta:\text{re}) := \\
\text{equivP_aux} \alpha \beta \emptyset \{\text{Drv}_1\text{st }\alpha \beta\} (\text{setSy } \alpha \cup \text{setSy } \beta) \\
(\text{mkDP}_\text{ini } \alpha \beta).
\]
Correctness

Lemma equiv_re_false :
\[\forall \alpha \beta, \text{equivP} \alpha \beta = \text{false} \rightarrow \alpha \not\sim \beta \]

1. this only happens when :

\[\text{iterate } H S = \text{NotOk } \alpha \beta (S_\alpha, S_\beta) \]

2. which means that:

\[\text{step } H' S' = \text{termfalse } \alpha \beta (S_\alpha, S_\beta) \]

3. be definition of step we know that:

\[\varepsilon(S_\alpha) \neq \varepsilon(S_\beta) \]

4. thus:

\[\alpha \not\sim \beta \]
Correctness

Lemma equiv_re_true :
\[\forall \alpha \, \beta, \text{equivP } \alpha \, \beta = \text{true} \rightarrow \alpha \sim \beta \]

1. define the following invariant:

\[INV(H, S) = \text{def } \forall x, \ x \in H \rightarrow \forall a \in \Sigma, \ \partial_a(x) \in S \cup H \]

2. prove that it holds for step:

\[INV(H, S) \rightarrow \text{step } H S = ((H', S'), \text{proceed}) \rightarrow INV(H', S') \]

3. prove that all derivatives are computed :

\[INV(H, S) \rightarrow \text{iterate } H S = \text{Ok } _ _ _ H' \rightarrow INV(H', \emptyset) \]

4. prove that all derivatives \((S_\alpha, S_\beta)\) verify \(\varepsilon(S_\alpha) = \varepsilon(S_\beta)\)

5. thus we obtain \(\forall w \in \Sigma^*, \varepsilon(\partial_w(\alpha)) = \varepsilon(\partial_w(\beta))\)

6. from which follows \(\alpha \sim \beta\)
Completeness

Obtained by trivial case analysis:

▶ $\alpha \sim \beta$:
 1. if $\text{equivP } \alpha \beta = \text{true}$: trivial from correctness proof;
 2. if $\text{equivP } \alpha \beta = \text{false}$: contradiction

▶ $\alpha \not\sim \beta$: by similar reasoning
The Reflexive Tactic

From the soundness results we were able to construct the following tactic:

Ltac re_equiv :=
 apply equiv_re_true;vm_compute;
 first [reflexivity | fail 2 "Regular expressions are not equivalent"].

Ltac re_inequiv :=
 apply equiv_re_false;vm_compute;
 first [reflexivity | fail 2 "Regular expressions not inequivalent"].

Ltac dec_re :=
 match goal with
 | |- \(L(?R1) \sim L(?R2) \) \implies \text{re-equiv}
 | |- \(L(?R1) \not\sim L(?R2) \) \implies \text{re-inequiv}
 | |- \(L(?R1) \leq L(?R2) \) \implies
 unfold lleq;change (\(L(R1) \cup L(R2) \)) with (\(L(R1 + R2) \));
 re_equiv
 | |- _ \implies fail 2 "Not a regular expression (in-)equivalence equation."
 end.
Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work
Performance

Some indicators (10000 pairs of uniform, randomly generated regular expressions):

- $|\alpha| = 25$ and 10 symbols: 0.142 (eq) and 0.025 (ineq)
- $|\alpha| = 50$ and 20 symbols: 0.446 (eq) and 0.060 (ineq)
- $|\alpha| = 100$ and 30 symbols: 1.142s (eq) and 0.112s (ineq)
- $|\alpha| = 250$ and 40 symbols: 5.142s (eq) and 0.147s (ineq)
- $|\alpha| = 1000$ and 50 symbols: 46.037s (eq) and 0.280 (ineq)

<table>
<thead>
<tr>
<th>alg.</th>
<th>(20, 200)</th>
<th>(50, 500)</th>
<th>(50, 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>eq</td>
<td>ineq</td>
<td>eq</td>
</tr>
<tr>
<td>equivP</td>
<td>2.211</td>
<td>0.048</td>
<td>9.957</td>
</tr>
<tr>
<td>ATBR</td>
<td>3.001</td>
<td>1.654</td>
<td>5.876</td>
</tr>
</tbody>
</table>

Table: Comparison of the performances (ATBR - Braibant & Pous).

Regular expression generated using the FAdo toolbox:
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Expression (In-)Equivalence</td>
</tr>
<tr>
<td>Implementation in Coq</td>
</tr>
<tr>
<td>Experimental Results</td>
</tr>
<tr>
<td>Deciding Relation Algebra Equations</td>
</tr>
<tr>
<td>(In-)Equivalence of KAT terms</td>
</tr>
<tr>
<td>Applications</td>
</tr>
<tr>
<td>Conclusions and Future Work</td>
</tr>
</tbody>
</table>
Claim: Equations over relation can be decided using regular expressions

First ingredient:

```plaintext
Fixpoint reRel(v:nat→ relation B)(α:re) : relation B :=
  match r with
  | 0  ⇒ EmpRel
  | 1  ⇒ IdRel
  | 'a ⇒ v a
  | x + y  ⇒ UnionRel (reRel v x) (reRel v y)
  | x · y  ⇒ CompRel (reRel v x) (reRel v y)
  | x*  ⇒ TransRefl (reRel v x)
  end.
```
Example

Consider:

- \(\Sigma = \{a, b\} \),
- \(R_a \) and \(R_b \) : binary relations over \(B \),
- a regular expression \(\alpha = a(b + 1) \)
- \(\nu \): a function that maps \(a \) to the relation \(R_a \), and \(b \) to the relation \(R_b \).
- The computation of \(\text{reRel} \alpha \nu \) gives the relation
 \(R_a \circ (R_b \cup I) \), and can be described as follows:

\[
\text{reRel} \alpha \nu = \text{reRel}(a(b + 1)) \nu \\
= \text{CompRel}(\text{reRel} a \nu)(\text{reRel} (b + 1) \nu) \\
= \text{CompRel} R_a (\text{reRel} (b + 1) \nu) \\
= \text{CompRel} R_a (\text{UnionRel} (\text{reRel} b \nu)(\text{reRel} 1 \nu)) \\
= \text{CompRel} R_a (\text{UnionRel} R_b(\text{reRel} 1 \nu)) \\
= \text{CompRel} R_a (\text{UnionRel} R_b \text{IdRel}).
\]

(\(= R_a \circ (R_b \cup I) \))
From Regular Expressions to Relations and back

\[\alpha \sim \beta \quad \rightarrow \quad \text{reRel} \lor \alpha \sim_{\mathcal{R}} \text{reRel} \lor \beta \]

This theorem allows for

- the design of a Coq tactic that transforms a goal of the form \(\text{reRel} \lor \alpha \sim_{\mathcal{R}} \text{reRel} \lor \beta \) into a goal stating that \(\alpha \sim \beta \)
- and then applies the tactic for regular expressions (in-)equivalence to close the proof.
Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work
Kleene Algebra with tests

Kleene Algebra with tests (KAT): KA extended with a boolean algebra \((K, T, +, \cdot, *, -, 0, 1)\) such that

- \((K, +, \cdot, *, 0, 1)\) is a KA,
- \((T, +, \cdot, -, 0, 1)\) is a Boolean algebra
- \(T \subseteq K\)
- KAT satisfies the axioms of KA and the axioms of Boolean algebra, that is, the set of axioms (1–15) and the following ones, for \(b, c, d \in T\):

\[
\begin{align*}
bc &= cb \\
\quad & (20) \\
b + (cd) &= (b + c)(b + d) \\
& (21) \\
b + c &= \overline{bc} \\
& (22) \\
b + \overline{b} &= 1 \\
& (23) \\
b &= \overline{bb} = b \\
& (24) \\
b + 1 &= 1 \\
& (25) \\
b + 0 &= b \\
& (26) \\
\overline{bc} &= \overline{b} + \overline{c} \\
& (27) \\
\overline{bb} &= 0 \\
& (28) \\
\overline{b} &= b \\
& (29)
\end{align*}
\]
Why formalizing Kleene Algebra with tests?

- Tests embedded in expressions \rightarrow encoding of imperative program constructions
- KAT:
 - KAT subsumes (can encode) PHL;
 - Capture and verify properties of simple imperative programs. An equational way to deal with partial correctness and program equivalence.
- Consequently, proving that a given program C is partially correct using the deductive system of PHL can be reduced to checking if C is partially correct by equational reasoning in KAT.
- Moreover, some formulas of KAT can be reduced to standard equalities and the equalities can be decided automatically.
KAT terms

- $\mathcal{B} = \{b_1, \ldots, b_n\}$: set of primitive tests
- $\overline{\mathcal{B}} = \{\overline{b} \mid b \in \mathcal{B}\}$.
- $l \in \mathcal{B} \cup \overline{\mathcal{B}}$ is called a literal.
- An atom α is a finite sequence of literals $l_1 l_2 \ldots l_n$, such that each l_i is either b_i or $\overline{b_i}$, for $1 \leq i \leq n$, where $n = |\mathcal{B}|$.
- At: set of atoms
- $\alpha \leq b \triangleq \alpha \rightarrow b$ is a propositional tautology (with $\alpha \in \text{At}$ and $b \in \mathcal{B}$).

- tests are boolean expressions inductively defined by:
 - 0 and 1 are tests
 - if $b \in \mathcal{B}$ then b is a test
 - if t_1 and t_2 are tests then $t_1 + t_2$, $t_1 \cdot t_2$, and $\overline{t_1}$ are tests

- KAT terms $= \text{KA terms}$ (i.e. regular expressions) $+$ tests, inductively defined by:
 - a test t is a KAT term
 - if $p \in \Sigma$ then p is a KAT term
 - if e_1 and e_2 are KAT terms, then so are $e_1 + e_2$, $e_1 e_2$, and e_1^*.
Guarded Strings

- A *guarded string* is a sequence $x = \alpha_0 p_0 \alpha_1 p_1 \cdots p_{(n-1)} \alpha_n$, with $\alpha_i \in \text{At}$ and $p_i \in \Sigma$.

<table>
<thead>
<tr>
<th>Regular Languages</th>
<th>Language Theoretic Model of KAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>word</td>
<td>guarded string</td>
</tr>
<tr>
<td>regular expression</td>
<td>KAT Term</td>
</tr>
<tr>
<td>concatenation</td>
<td>fusion of compatible guarded string</td>
</tr>
<tr>
<td>Languages</td>
<td>set of guarded strings</td>
</tr>
</tbody>
</table>

- ϵ_α defined by induction: $\epsilon_\alpha(p) = false$, $\epsilon_\alpha(e^*) = true$, $\epsilon_\alpha(t) = true$ if $\alpha \leq t$, $\epsilon_\alpha(t) = false$ otherwise, $\epsilon_\alpha(e_1 + e_2) = \epsilon_\alpha(e_1) \lor \epsilon_\alpha(e_2)$, $\epsilon_\alpha(e_1 e_2) = \epsilon_\alpha(e_1) \land \epsilon_\alpha(e_2)$

- $E(e)$ is defined by $\{\alpha \in \text{At} \mid \epsilon_\alpha(e) = true\}$
Kleene Algebra with tests

Let \(\alpha p \in (\text{At} \cdot \Sigma) \) and let \(e \) be a KAT term. The set \(\partial_{\alpha p}(e) \) of partial derivatives of \(e \) with respect to \(\alpha p \) is inductively defined by

\[
\begin{align*}
\partial_{\alpha p}(t) &= \emptyset \\
\partial_{\alpha p}(q) &= \begin{cases}
\{1\} & \text{if } p \equiv q, \\
\emptyset & \text{otherwise}.
\end{cases} \\
\partial_{\alpha p}(e_1 + e_2) &= \partial_{\alpha p}(e_1) \cup \partial_{\alpha p}(e_2) \\
\partial_{\alpha p}(e_1 e_2) &= \begin{cases}
\partial_{\alpha p}(e_1)e_2 \cup \partial_{\alpha p}(e_2) & \text{if } \varepsilon_{\alpha}(e_1) = \text{true}, \\
\partial_{\alpha p}(e_1)e_2, & \text{otherwise}.
\end{cases} \\
\partial_{\alpha p}(e^*) &= \partial_{\alpha p}(e)e^*
\end{align*}
\]

KAT Partial derivatives for words \(w \in (\text{At} \cdot \Sigma)^* \), inductively by \(\partial_{\varepsilon}(e) = \{e\} \), and \(\partial_{w\alpha p}(e) = \partial_{\alpha p}(\partial_w(e)) \). The (proven finite) set of all partial derivatives of a KAT term is the set

\[
\partial_{(\text{At} \cdot \Sigma)^*}(e) = \bigcup_{w \in (\text{At} \cdot \Sigma)^*} \{e' \mid e' \in \partial_w(e)\}
\]
An Example

Example
Let $B = \{b_1, b_2\}$, $\Sigma = \{p, q\}$, and $e = b_1p(b_1 + b_2)q$. The partial derivative of e with respect to the sequence $b_1b_2p\overline{b_1}b_2q$ is the following:

$$
\partial_{b_1b_2p\overline{b_1}b_2q}(e) = \partial_{b_1b_2p\overline{b_1}b_2q}(b_1p(b_1 + b_2)q)
= \partial_{\overline{b_1}b_2q}(\partial_{b_1b_2p}(b_1p(b_1 + b_2)q))
= \partial_{\overline{b_1}b_2q}(\partial_{b_1b_2p}(b_1)(p(b_1 + b_2)q) \cup \partial_{b_1b_2p}(p(b_1 + b_2)q))
= \partial_{\overline{b_1}b_2q}(\partial_{b_1b_2p}(b_1)(p(b_1 + b_2)q)) \cup \partial_{\overline{b_1}b_2q}(\partial_{b_1b_2p}(p(b_1 + b_2)q))
= \partial_{\overline{b_1}b_2q}(\partial_{b_1b_2p}(p)(b_1 + b_2)q)
= \partial_{\overline{b_1}b_2q}((b_1 + b_2)q)
= \partial_{\overline{b_1}b_2q}(b_1 + b_2)q \cup \partial_{\overline{b_1}b_2q}(q)
= \partial_{\overline{b_1}b_2q}(q)
= \{1\}.

$$
A Procedure for KAT Terms Equivalence

Let \(e \) be a KAT term,

\[
 e \sim E(e) \cup \left(\bigcup_{\alpha p \in (At \cdot \Sigma)} \alpha p \partial_{\alpha p}(e) \right).
\]

Therefore, if \(e_1 \) and \(e_2 \) are KAT terms, we can reformulate the equivalence \(e_1 \sim e_2 \) as

\[
 E(e_1) \cup \left(\bigcup_{\alpha p \in (At \cdot \Sigma)} \alpha p \partial_{\alpha p}(e_1) \right) \sim E(e_2) \cup \left(\bigcup_{\alpha p \in (At \cdot \Sigma)} \alpha p \partial_{\alpha p}(e_2) \right),
\]

which is tantamount at checking that \(\forall \alpha \in At, \varepsilon_{\alpha}(e_1) = \varepsilon_{\alpha}(e_2) \) and \(\forall \alpha p \in (At \cdot \Sigma), \partial_{\alpha p}(e_1) \sim \partial_{\alpha p}(e_2) \) hold.
A Procedure for KAT Terms Equivalence

We can finitely iterate over the previous equations and reduce the
(in)equivalence of e_1 and e_2 to one of the next equivalences:

$$e_1 \sim e_2 \iff \forall \alpha \in \text{At}, \forall w \in (\text{At} \cdot \Sigma)^*, \varepsilon_\alpha(\partial_w(e_1)) = \varepsilon_\alpha(\partial_w(e_2))$$ (30)

and

$$e_1 \not\sim e_2 \iff (\exists w \exists \alpha, \varepsilon_\alpha(\partial_w(e_1)) \neq \varepsilon_\alpha(\partial_w(e_2))).$$ (31)
The procedure equivKAT

Require: \(S = \{(\{e_1\}, \{e_2\})\} \), \(H = \emptyset \)
Ensure: true or false

1: procedure EquivKAT\((S, H)\)
2: while \(S \neq \emptyset \) do
3: \((\Gamma, \Delta) \leftarrow \text{POP}(S)\)
4: for \(\alpha \in \text{At} \) do
5: if \(\varepsilon_{\alpha}(\Gamma) \neq \varepsilon_{\alpha}(\Delta) \) then
6: return false
7: end if
8: end for
9: \(H \leftarrow H \cup \{(\Gamma, \Delta)\} \)
10: for \(\alpha p \in (\text{At} \cdot \Sigma) \) do
11: \((\Lambda, \Theta) \leftarrow \partial_{\alpha p}(\Gamma, \Delta)\)
12: if \((\Lambda, \Theta) \notin H \) then
13: \(S \leftarrow S \cup \{(\Lambda, \Theta)\} \)
14: end if
15: end for
16: end while
17: return true
18: end procedure

- lines 4-8 and 10-15: exponential behavior
- Formally proved terminating and correct
- COQ tactic based on equivKAT
Example

Let $B = \{b\}$ and let $\Sigma = \{p\}$, are $e_1 = (pb)^* p$ and $e_2 = p(bp)^*$ equivalent? Consider $s_0 = ((pb)^* p, \{p(bp)^*\})$, it is enough to show that \(\text{equivKAT}([s_0], \emptyset) = \text{true}\).

The first step of the computation generates the two new following pairs of derivatives:

\[
\partial_{bp}(e_1, e_2) = (\{1, b(pb)^*\}, (bp)^*)
\]

\[
\partial_{bp}(e_1, e_2) = (\{1, b(pb)^*\}, (bp)^*)
\]

Then, (e_1, e_2) is added to the historic set H and the next iteration of equivKAT considers $S = \{s_1\}$, with $s_1 = (\{1, b(pb)^*\}, (bp)^*)$, and $H = \{s_0\}$.

\[
\partial_{bp}(\{1, b(pb)^*\}, (bp)^*) = (\{b(pb)^*\}, (bp)^*)
\]

\[
\partial_{bp}(\{1, b(pb)^*\}, (bp)^*) = (\emptyset, \emptyset)
\]

The next iteration of the procedure will have $S = \{s_2, s_3\}$ and $H = \{s_0, s_1\}$, with $s_2 = (\{b(pb)^*\}, (bp)^*)$ and $s_3 = (\emptyset, \emptyset)$.

Since the derivative of s_2 is either s_2 or s_3 and since the same holds for the derivatives of s_3, the procedure will terminate in two iterations with $S = \emptyset$ and $H = \{s_0, s_1, s_2, s_3\}$. Hence, we conclude that $e_1 \sim e_2$.
Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work
Program Equivalence

if e_1 and e_2 are terms encoding the IMP programs C_1 and C_2, and if the Boolean test B is encoded by the KAT test t, then we can encode sequence, conditional instructions and while loops in KAT as follows.

\[
C_1; C_2 \triangleq e_1 e_2,
\]

if B then C_1 else C_2 fi $\triangleq (te_1 + \bar{t}e_2)$,

while B do C_1 end $\triangleq (te_1)^*\bar{t}$.
Example
Let $B = \{b, c\}$ and $\Sigma = \{p, q\}$ be the set of primitive tests and set of primitive programs, respectively, and let P_1 and P_2 be the following two programs:

$$P_1 \triangleq \text{while } B \text{ do } C_1; \text{while } B' \text{ do } C_2 \text{ end end}$$

$$P_2 \triangleq \text{if } B \text{ then } C_1; \text{while } B + B' \text{ do if } B' \text{ then } C_2 \text{ else } C_1 \text{ fi end else skip fi}$$

Let $C_1 = p$, $C_2 = q$, $B = b$ and $B' = c$. The programs P_1 and P_2 are encoded in KAT as

$$e_1 = (bp((cq)^*c))^*\bar{b} \quad \text{and} \quad e_2 = bp((b + c)(cq + \bar{c}p))^*(b + c) + \bar{b},$$

respectively. The procedure decides the equivalence $e_1 \sim e_2$ in 0.053 seconds.
Program Correctness

This methodology can be extended in order to encode a non trivial subset of Hoare Logic and allows \textit{classical} program verification based on contracts (pre-post condition, invariants).
Table of Contents

- Regular Expression (In-)Equivalence
- Implementation in Coq
- Experimental Results
- Deciding Relation Algebra Equations
- (In-)Equivalence of KAT terms
- Applications

Conclusions and Future Work
Main conclusions and results

- efficient procedure to decide regular expression equivalence;
- able to solve equations involving relations;
- a simple extension to decide KAT terms equivalence.
- Application to program verification, but mainly program equivalence
- Extraction to Caml

- Improve the performance of $equivKAT$ in order to handle bigger (in)-equivalences (on-going work)
- Extension to Schematic Kleene Algebra with test (widening the actual HL coverage)
- Modal (and concurrent) Kleene Algebra (Equivalence for parallel or concurrent Programs, timing behavior)
- Embedding into program verification frameworks (why3, etc...)
- Application Runtime Verification (e.g. of Ada/Spark programs) (ongoing work)
Thank you!
supplementary slides
Finiteness of Partial Derivatives

- Recursive definition of PD via support [Champarnaud and Ziadi]:
 \[
 \begin{align*}
 \pi(\emptyset) &= \emptyset \\
 \pi(\varepsilon) &= \emptyset \\
 \pi(a) &= \{1\} \\
 \pi(\alpha + \beta) &= \pi(\alpha) \cup \pi(\beta) \\
 \pi(\alpha\beta) &= \pi(\alpha)\beta \cup \pi(\beta) \\
 \pi(\alpha^*) &= \pi(\alpha)\alpha^*
 \end{align*}
 \]

- Another way of looking at PD:
 \[PD(\alpha) = \{\alpha\} \cup \pi(\alpha)\]

- Again, the upper bound of PD:
 \[
 |\pi(\alpha)| \leq |\alpha|_\Sigma \\
 |PD(\alpha)| \leq |\alpha|_\Sigma + 1
 \]