Deciding Kleene Algebra Terms (In-)Equivalence
in Coq

Nelma Moreira, David Pereira and Sim3o Melo de Sousa

Tallinn
September 2016

Outline

Regular Expression (In-)Equivalence
Implementation in Coq
Experimental Results

Deciding Relation Algebra Equations
(In-)Equivalence of KAT terms
Applications

Conclusions and Future Work

Table of Contents

Regular Expression (In-)Equivalence

Kleene Algebra

Idempotent semiring

(K,+,-,0,1):
X+XxX=X
x+0=x
X+y=y+x
x+(y+z)=(Kx+y)+z
O0x=0
x0=0
Ix =x
x1 = x

x(yz) = (xv)z
x(y+2z)=xy+xz
(x+y)z=xz+yz.

(1)
(2)
(3)
(4)
()
(6)
(7)
(8)
(9)
(10)
(11)

Consider x <y £ x+y=y.

Kleene Algebra (KA): (K,+,-,*,0,1)
such that the sub-algebra (K, +,-,0,1)
is an idempotent semiring and that the
operator * is characterized by the
following axioms:

14 pp* < p* (12)
14+ p*p<p* (13)
g+pr<r—pq<r (14)
g+mp<r—qgp*<r (15)

Standard Model of KA: (RLs,U,-*,0,{c})

Regular expressions and Languages

» Regular expression:
a,f=0]1]laeX|a+f|af]|a”
» Language denoted by a regular expression:

£(0) =0 L(1) = {e} £(a) = {a}
Lla+p) = L(a)UL(B) L(aB) = L()L(B) L(a*) = L(a)*

» Regular expression equivalence:
a~ Biff L(a) = L(P)
» Nullability:

| true if e€ L(w)
e(a) = { false if e¢ L(«)

Partial Derivatives

» Definition of Partial Derivative wrt a € £ [Mirkin,Antimirov]:

0,(0) = 0
0,(1) = 0 .
O5(b) = {) gtiefwlzse
aa(a + B) = aa(a)(u)aa(/B) ()
B 0a2(a)BU0,(B) ife(a) = true,
Oa(af) = { O] otherwise.
du(a®) = dufa)a*

Partial Derivatives (cont.)

» Partial Derivatives wrt Words:

O:(a) = A{a}
Ouala) = 02(0w()).

Language of Partial Derivative: £(9,(c)) = a~1(£())

v

v

Example:
aabb(ab*) = ab(8b(8a(ab*))) = ab(ab(aa(a)b*))
= Op(0p({b*})) = Op(9p(b)b*) = Op({b*}) = {b*}

v

An interesting consequence: w € L(«) <> (0 (a)) = true

v

Set of all Partial Derivatives: PD(a) = |, cx+(0w(a))

v

Finiteness of PD [Mirkin,Antimirov] : PD(a) < ||y + 1

(In-)Equivalence Through Iterated Derivation

a~e(@ul]Jad) os(a)) (16)

acx
If o ~ 3, then by (16) :

e@)uJad ds(a) ~eB)ulJad o.(8) (17)

acex acx

By (17) and knowing that w € L(«) <> (0w (a)) = true, we
obtain:

(Vw € ¥, e(0w(a)) = e(0w(B))) <> a ~ B. (18)

e(Ow(@)) # e(0w(B))) = a # B, for some w € L. (19)

The Procedure equivP
Require: S = {({a},{8})}, H=10

Ensure: true or false

1: procedure EquivP(S, H)

2 while S # () do

3 (Sa; Sg) + POP(S)

4: if £(S.) # £(Ss) then » Construct a bisimulation that leads to
5: return false (18) or finds a counter-example that
6 end if prove that such a bisimulation does
7 H <+ HU{(S4,Ss)} not exist (19).

8 for ac ¥ do » S: Derivatives yet to be processed

9: _(5!1’ Sp) <= 0a(Sa, 5p) > H: Processed derivatives (H is finite)
10: if (S,,S3) ¢ H then .
11: S+ SU{(S..5.)} > if false, then counter-example
12: end if
13: end for

14: end while
15: return true
16: end procedure

The Procedure equivP, an example

» Consider a = (ab)*a and 8 = a(ba)*.
> Then so = ({o, B}) = ({(ab)*a}, {a(ba)*})
» We must show that equivP({so},) = true.

» equivP for such « and 3 computes
s1 = ({1, b(ab)*a}, {(ba)*}) and s = (0,0).

» Execution traces:

5,' H,' drvs.
{s0} 0 0a(s0) = s1,0p(50) = S2
{s1,5} | {s0} Da(51) = 52, 0p(51) = S0

{s2} {s0, 51} 0:(52) = 52,0p(52) = 5

WIN| PO~

{So, S1, 52} true

Table of Contents

Implementation in Coq

Ingredient 1 : Representation of Derivatives

» Derivatives as dependent records:

Record Drv (a fB:re) := mkDrv {
dp :> set re * set re ;

w : word ;

cw : dp = (9y(),0u(8)

T

Example (Original regular expression)

Definition Drv_1st (a f[:re) : Drv a .
refine (mkDrv ({a},{5}) €).
abstract(reflexivity).

Defined.

Ingredient 2 : Derivation of Drv terms

» Derivation of Drv terms wrt a € X:

Definition Drv_pdrv(x:Drv a () (a:A) : Drv «a (.
refine(match x with
| mkDrv o 8 p w H =
mkDrv o B (pdrvp p a) (w++[al) _
end) .
abstract ((* Proot of J,(0w (), Ow(B)) = (Owa(cr), Owal(B)) =) .
Defined.

» Derivation of Drv terms wrt a set of symbols:

Definition Drv_pdrv_set(x:Drv o () (Sig:set A)
set (Drv a B) :=
fold (fun a:A = add (Drv_pdrv « (3 x a)) Sig 0.

» Ignoring already existing derivatives in H:

Definition Drv_pdrv_set_filtered(x:Drv a ()
(H:set(Drv o ()) (sig:set A):set (Drv «) :=
filter (fun y = negb (y € H)) (Drv_pdrv_set x sig).

Ingredient 3 : One Step of Computation

» proceed: continue the iterative

Inductive step_case (a fB:re) : Type := process;

Iproceed : step_case a f » termtrue: the procedure must

ltermtrue : set (Drv a) — step_case terminate and use the parameter as
a B a witness of equivalence;

|termfalse : Drv a [— step_case a [3. » termfalse: the procedure must

terminate and use the parameter as
a counter-example of equivalence.

(*step = lines 8-13, for loop of EquivP*)

Definition step (H S:set (Drv a J3)) (sig:set A)

((set (Drv aff) * set (Drv « [)) * step_case a ff) :=
match choose s with

|None = ((H,S),termtrue o S H)

|Some (Sq,S3) =

if c_of _Drv _ _ (S,,Sp) then
let H' := add (S,,Ss) H in
let §' := remove (S5,,53) S in

let ns := Drv_pdrv_set_filtered a f (S,,Ss) H' sig in
((H",ns U §'),proceed a f3)
else
((H,S) ,termfalse o 3 (S, S3))
end.

Ingredient 4 : Termination

» Considering
stepa 8 HS = ((H,S),proceed a f)

and
SNH=10

» the termination is ensured by:

(2Uel=+1) 5 28I+ L 1y — | 1| < (2Uel=F1) 5 208l +1) 1) |4

Ingredient 4 : Main function

> iterator :

Function iterate(a [:re)(H S:set (Drv a ())
(sig:set A)(D:DP « 8 h s){wf (LLim o B) H}:

term_cases o (3 :=
let ((H',S ,next) := step H S in
match next with

|termfalse x = NotOk a [x
|[termtrue h = 0k o S h
|progress = iterate a« 8 H' S’ sig (DP_upd o« 8 H S
sig D)
end.

» where DP is defined as

Inductive DP (h s:set (Drv a f3))

: Prop :=
| is.dpt : hNs =0 —) =

= true — DP h s.

The function equivP

» wrap iterate into a Boolean function:

Definition equivP_aux(a f:re) (H S:set(Drv a f))
(sig:set A)(D:DP a B H S):=
let H' := iterate o 8 H S sig D in
match H' with
| 0k _ = true
| NotOk _ = false
end.

» instantiate with the correct arguments:

Definition equivP (a [B:re) :=
equivP_aux a 8 0 {Drv_1st a B} (setSy a U setSy 3)
(mkDP_ini «).

Correctness

Lemma equiv_re_false :
Y a [, equivP o § = false — a ¢ [

1. this only happens when :
iterate H S = NotOk a [(Sq, Sp)
2. which means that:
step H' S’ = termfalse a 8 (S, Sp)
3. be definition of step we know that:
£(Sa) # £(5p)

4. thus:
atp

Correctness

Lemma equiv_re_true :
YV a B, equivP a f = true — a~f

1. define the following invariant:
INV(H,S) =ger Vx, x e H 5> Va € X, 0,(x) € SUH
2. prove that it holds for step:
INV(H,S) — step HS = ((H',S"), proceed) — INV(H', S)
3. prove that all derivatives are computed :
INV(H,S) — iterate HS =0k H — INV(H',0)

4. prove that all derivatives (S,, Sg) verify e(So) = €(Sg)
thus we obtain Vw € ¥*,¢(0y () = (0w (B)))
6. from which follows a ~ 3

o

Completeness

Obtained by trivial case analysis:
> a~ /8;
1. if equivP a 3 = true : trivial from correctness proof;
2. if equivP o 8 = false : contradiction

> « o 3: by similar reasoning

The Reflexive Tactic

From the soundness results we were able to construct the following
tactic:

Ltac re_equiv :=
apply equiv_re_true;vm_compute;
first [reflexivity | fail 2 "Regular expressions are not
equivalent" J.

Ltac re_inequiv :=
apply equiv_re_false;vm_compute;
first [reflexivity | fail 2 "Regular expressions not
inequivalent" 1.

Ltac dec_re :=
match goal with
| I- £(?R1) ~ L(?R2) = re_equiv
| |- £(?R1) # L(?R2) = re_inequiv
| |- L£(?7R1) < L(?R2) =
unfold lleq;change (L(R1) U L£(R2)) with (L(R1 + R2));
re_equiv
| |- _ = fail 2 "Not a regular expression (in—)equivalence
equation."
end.

Table of Contents

Experimental Results

Performance

Some indicators (10000 pairs of uniform, randomly generated
regular expressions):

v

vV vyYyYyy

|a] = 25 and 10 symbols : 0.142 (eq) and 0.025 (ineq)

|a| =50 and 20 symbols : 0.446 (eq) and 0.060 (ineq)

|a] = 100 and 30 symbols : 1.142s (eq) and 0.112s (ineq)
|a] =250 and 40 symbols : 5.142s (eq) and 0.147s (ineq)
|a] = 1000 and 50 symbols : 46.037s (eq) and 0.280 (ineq)

alg./(k, n) (20,200) (50,500) (50, 1000)
eq ineq eq ineq eq ineq
equivP 2.211 | 0.048 || 9.957 | 0.121 || 17.768 | 0.149
ATBR 3.001 | 1.654 || 5.876 | 2.724 || 16.682 | 12.448

Table: Comparison of the performances (ATBR - Braibant & Pous).

Regular expression generated using the FAdo toolbox:

http://http://fado.dcc.fc.up.pt/

http://http://fado.dcc.fc.up.pt/

Table of Contents

Deciding Relation Algebra Equations

Relations vs. Regular expressions

Claim: Equations over relation can be decided using regular
expressions

First ingredient:

Fixpoint reRel(v:nat— relation B)(a:re) : relation B :=
match r with

| 0 = EmpRel

| 1 = IdRel

| ‘a= v a

| x + y = UnionRel (reRel v x) (reRel v y)
| x - y = CompRel (reRel v x) (reRel v y)

| x* = TransRefl (reRel v x)

end.

Example
Consider:
Y ={a, b},
R, and R}, : binary relations over B,
a regular expression o« = a(b + 1)
v: a function that maps a to the relation R,, and b to the
relation Rp.
The computation of reRel « v gives the relation
R0 (RpUZ), and can be described as follows:

vV vyYyys.y

v

reRel a« v = reRel(a(b+1)) v
= CompRel(reRel a v)(reRel (b+1) v)
= CompRel R, (reRel (b+1) v)
= CompRel R, (UnionRel (reRel b v)(reRel 1 v))
= CompRel R, (UnionRel Ry(reRel 1 v))
= CompRel R, (UnionRel RyldRel).
(:Rao(RbUI))

From Regular Expressions to Relations and back

a~fp — reRel v a~preRel v

This theorem allows for

» the design of a Coq tactic that transforms a goal of the form
reRel v a ~ reRel v 3 into a goal stating that o ~ 3

» and then applies the tactic for regular expressions
(in-)equivalence to close the proof.

Table of Contents

(In-)Equivalence of KAT terms

Kleene Algebra with tests

Kleene Algebra with tests (KAT):
KA extended with a boolean
algebra (K, T,+,-,*,7,0,1)
such that
» (K,+,-,*,0,1) is a KA,
» (T,+,-,7,0,1) is a Boolean
algebra
» TCK
» KAT satisfies the axioms of
KA and the axioms of
Boolean algebra, that is, the
set of axioms (1-15) and the
following ones, for
b,c,de T:

bc = cb
b+ (cd) = (
b+ c=bc
b+b=1
bb=b
b+1=1
b+0=05b

bc=b+
bb=0
b=b

b+ c)(b+ d)

ol

21

Why formalizing Kleene Algebra with tests?

» Tests embedded in expressions — encoding of imperative

program constructions
> KAT :

» KAT subsumes (can encode) PHL;

» Capture and verify properties of simple imperative programs.
An equational way to deal with partial correctness and
program equivalence.

» Consequently, proving that a given program C is partially
correct using the deductive system of PHL can be reduced
to checking if C is partially correct by equational reasoning in
KAT.

» Moreover, some formulas of KAT can be reduced to standard
equalities and the equalities can be decided automatically.

KAT terms

» B={b1,...,bn}: set of
primitive tests
» B={b|be B}.

> tests are booleans expressions
inductively defined by:

» 0 and 1 are tests

» | € BUB is called a literal. » if b Bthen b is a test

» An atom « is a finite » if t; and t, are tests then t; + to,
sequence of literals hb .../, t; - to, and T are tests
such that each J; is either b; » KAT terms = KA terms (i.e.
or b;, for 1 < i < n, where regular expressions) + tests,
n=|8|. inductively defined by:

» At: set of atoms > atest t is a KAT term

> a<b 2 a-bisa » if p € X then pis a KAT term

» if e; and e are KAT terms, then

opositional tautolo ith
proposition ! gy (wi so are e; + e, e1ep, and e}.

a€Atand b€ B,).

Guarded Strings

> A guarded string is a sequence x = appoQ1p1 - - - P(n—1)Cn,

with «; € At and p; € L.

’ Regular Languages ‘ Language Theoretic Model of KAT ‘

word

guarded string

regular expression

KAT Term

concatenation

fusion of compatible guarded string

Languages

set of guarded strings

> ¢, defined by induction: €,(p) = false, e, (e*) = true,
ea(t) = true if a < t, e, (t) = false otherwise,
(

ca(er + &) = eqa(e1) Vea(e), ealerer) = ealer) Aeale)

» E(e) is defined by {av € At | €eq(e) = true}

Kleene Algebra with tests

Let ap € (At- X) and let e be a KAT term. The set Onp(e) of
partial derivatives of e with respect to ap is inductively defined by

Oap(t) =
{1} ifp=aq,

Oa, =

(9) { otherwise.

aap(el + 62) = aup 61) @] 804[,(62)

Dup(eres) = { Oap(er)ex U dap(e2) ifsa(el') = true,
Oapler)ez, otherwise.
Oap(€”) = Oap(e)e”

KAT Partial derivatives for words w € (At - X)*, inductively by

0.(e) = {e}, and Dyap(€) = Dup(Du(e)).
The (proven finite) set of all partial derivatives of a KAT term is
the set

dacry-(e) = |J (e | € cdule)}

we(At-X)*

An Example

Example

Let B = {b1, b2}, T = {p,q}, and e = b1p(b1 + b2)q. The partial
derivative of e with respect to the sequence by bypbi boq is the
following:

ablbzpﬁbzq(e) = ablbzpﬁbzq(blp(bl + b2)q)
boq(Ob1b2p(b1P(b1 + b2)q))
brq(Ob1bap(D1)(P(b1 + b2)q) U Oby by p(p(b1 + b2)q))
boq(Ob1bap(01)(P(b1 + b2)q)) U Oy, (O, b,p(P (b1 + b2)9))
Tbyq(Ob1b2p(P) (b1 + b2)q)
((b1 + b2)q)
(b1 + b2)q U 04, .(q)
()

b2q

A Procedure for KAT Terms Equivalence

Let e be a KAT term,
e~ E(e)U (U apaap(e)>.
ape(At-X)

Therefore, if e; and e are KAT terms, we can reformulate the
equivalence e; ~ e, as

E(el)U (U apaap(e1)> ~ E(eZ)U (U apaap(@))a
ape(At-X) ape(At-X)

which is tantamount at checking that Vo € At, e4(e1) = cq(e2)
and Yap € (At X), Oap(e1) ~ Oap(e2) hold.

A Procedure for KAT Terms Equivalence

We can finitely iterate over the previous equations and reduce the
(in)equivalence of e; and e, to one of the next equivalences:

e~ e < Yae A, Vw e (At X)*, eq(0nw(e1)) = ca(Ow(e2))

and
et e < (Iwda, ca(On(er)) # ea(Ow(e2))).

The procedure equivKAT
Require: S ={({ei},{e})}, H=0

Ensure: true or false

1: procedure EquivKAT(S, H)

2 while S # () do

3 (T,A) < POP(S)

4: for a € At do

5: if ea(l) # ea(A) then

6: return false

7 end if > lines 4-8 and 10-15 : exponential behavior
8: end for > Formally proved terminating and correct
% H < HU{(T, A)} > COQ tactic based on equivKAT
10: for ap € (At-X) do
11: (N, ©) + 0up(T, A)
12: if (A,©) ¢ H then
13: S+ SU{(A©)}
14: end if
15: end for

16: end while
17: return true
18: end procedure

Example

Let B = {b} and let X = {p}, are e; = (pb)*p and e> = p(bp)* equivalent?
Consider so = ({(pb)*p}, {p(bp)*}), it is enough to show that

equivKAT ({so}, #) = true.

The first step of the computation generates the two new following pairs of
derivatives:

Osp(e1, &2) = ({1, b(pb)"}, {(bp)"}),
Op,(e1,€2) = ({1, b(pb)"}, {(bP)"}).

Then, (€1, e2) is added to the historic set H and the next iteration of equivKAT
considers S = {s1}, with s; = ({1, b(pb)*}, {(bp)*}), and H = {so}.

9mp({1, b(pb)"}, {(bP)"}) = ({b6(pb)"}, {(bp)"}),
95,({1, b(pb)"}, {(bp)"}) = (0,0).

The next iteration of the procedure will have S = {s,,s3} and H = {s0, 51},
with s, = ({b(pb)*}, {(bp)*}) and sz = (0, 0).

Since the derivative of s; is either s, or s3 and since the same holds for the
derivatives of s3, the procedure will terminate in two iterations with S = () and
H = {so, 51,52, s3}. Hence, we conclude that e; ~ e>.

Table of Contents

Applications

Program Equivalence

if 1 and e are terms encoding the IMP programs C; and G, and
if the Boolean test B is encoded by the KAT test t, then we can
encode sequence, conditional instructions and while loops in KAT
as follows.

Ci; G et e,
if B then Cy else G, fi £(te; + tes),
while B do C; end £(te;)*t.

Example

Let B={b,c} and ¥ = {p, q} be the set of primitive tests and set
of primitive programs, respectively, and let P1 and P2 be the
following two programs:

P, £ while Bdo Ci:while B’ do G, end end
P> £ if Bthen C;while B+ B’ do if B’ then Gy else C; fi end elseskipfi

Let GG =p, G =q, B=band B’ = c. The programs P; and P,
are encoded in KAT as

e1 = (bp((cq)*c))*b and e = bp((b+ c)(cqg +<p))*(b+ c) + b,

respectively. The procedure decides the equivalence e; ~ e in
0.053 seconds.

Program Correctness

This methodology can be extended in order to encode a non trivial
subset of Hoare Logic and allows classical program verification
based on contracts (pre-post condition, invariants).

Table of Contents

Conclusions and Future Work

Main conclusions and results

v

efficient procedure to decide regular expression equivalence ;

v

able to solve equations involving relations ;

a simple extension to decide KAT terms equivalence.

v Vv

Application to program verification, but mainly program equivalence

v

Extraction to Caml

» Improve the performance of equivKAT in order to handle bigger
(in)-equivalences (on-going work)

> Extension to Schematic Kleene Algebra with test (widening the
actual HL coverage)

> Modal (and concurrent) Kleene Algebra (Equivalence for parallel or
concurrent Programs, timing behavior)

> Embedding into program verification frameworks (why3, etc...)

> Application Runtime Verification (e.g. of Ada/Spark programs)
(ongoing work)

Thank youl!

supplementary slides

Finiteness of Partial Derivatives

» Recursive definition of PD via support [Champarnaud and

Ziadi]:
(@) = 0
m(e) = 0
m(a) = {1}
m(a+pB) = w(a)Umn(B)
m(af) = m(a)fuUn(B)
m(a*) = 7w(a)a*

» Another way of looking at PD:
PD(a) = {a} Un(a)
» Again, the upper bound of PD:
m(a)| < |als

|PD(a)| < |afs +1

	Regular Expression (In-)Equivalence
	Implementation in Coq
	Experimental Results
	Deciding Relation Algebra Equations
	(In-)Equivalence of KAT terms
	Applications
	Conclusions and Future Work

