Deciding Kleene Algebra Terms (In-)Equivalence in Coq

Nelma Moreira, David Pereira and Simão Melo de Sousa

Tallinn
September 2016

Outline

Regular Expression (In-)Equivalence
Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations
(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Table of Contents

> Regular Expression (In-)Equivalence

> Implementation in Coq

> Experimental Results

> Deciding Relation Algebra Equations
> (In-)Equivalence of KAT terms

> Applications

Conclusions and Future Work

Kleene Algebra

Idempotent semiring

$$
\begin{align*}
(K,+, \cdot, 0,1) & : \\
x+x & =x \tag{1}\\
x+0 & =x \\
x+y & =y+x \\
x+(y+z) & =(x+y)+z \\
0 x & =0 \tag{12}\\
x 0 & =0 \tag{6}\\
1 x & =x \tag{7}\\
x 1 & =x \tag{8}\\
x(y z) & =(x y) z \tag{9}\\
x(y+z) & =x y+x z \tag{15}\\
(x+y) z & =x z+y z
\end{align*}
$$

(2) Kleene Algebra (KA): $\left(K,+, \cdot,{ }^{\star}, 0,1\right)$ such that the sub-algebra $(K,+, \cdot, 0,1)$
(3) is an idempotent semiring and that the
(4) operator * is characterized by the
(5) following axioms:

$$
\begin{gathered}
1+p p^{\star} \leq p^{\star} \\
1+p^{\star} p \leq p^{\star} \\
q+p r \leq r \rightarrow p^{\star} q \leq r \\
q+r p \leq r \rightarrow q p^{\star} \leq r
\end{gathered}
$$

Standard Model of KA: $\left(\mathrm{RL}_{\Sigma}, \cup, \cdot,{ }^{\star}, \emptyset,\{\epsilon\}\right)$

Regular expressions and Languages

- Regular expression:

$$
\alpha, \beta::=0|1| a \in \Sigma|\alpha+\beta| \alpha \beta \mid \alpha^{\star}
$$

- Language denoted by a regular expression:

$$
\begin{array}{ccc}
\mathcal{L}(0)=\emptyset & \mathcal{L}(1)=\{\epsilon\} & \mathcal{L}(a)=\{a\} \\
\mathcal{L}(\alpha+\beta)=\mathcal{L}(\alpha) \cup \mathcal{L}(\beta) & \mathcal{L}(\alpha \beta)=\mathcal{L}(\alpha) \mathcal{L}(\beta) & \mathcal{L}\left(\alpha^{\star}\right)=\mathcal{L}(\alpha)^{\star}
\end{array}
$$

- Regular expression equivalence:

$$
\alpha \sim \beta \text { iff } \mathcal{L}(\alpha)=\mathcal{L}(\beta)
$$

- Nullability:

$$
\varepsilon(\alpha)=\left\{\begin{array}{lll}
\text { true } & \text { if } & \epsilon \in \mathcal{L}(\alpha) \\
\text { false } & \text { if } & \epsilon \notin \mathcal{L}(\alpha)
\end{array}\right.
$$

Partial Derivatives

- Definition of Partial Derivative wrt $a \in \Sigma$ [Mirkin,Antimirov]:

$$
\begin{aligned}
\partial_{a}(0) & =\emptyset \\
\partial_{a}(1) & =\emptyset \\
\partial_{a}(b) & = \begin{cases}\{1\} & \text { if } a \equiv b \\
\emptyset & \text { otherwise }\end{cases} \\
\partial_{a}(\alpha+\beta) & =\partial_{a}(\alpha) \cup \partial_{a}(\beta)
\end{aligned}
$$

Partial Derivatives (cont.)

- Partial Derivatives wrt Words:

$$
\begin{aligned}
\partial_{\varepsilon}(\alpha) & =\{\alpha\} \\
\partial_{w a}(\alpha) & =\partial_{a}\left(\partial_{w}(\alpha)\right)
\end{aligned}
$$

- Language of Partial Derivative: $\mathcal{L}\left(\partial_{a}(\alpha)\right)=a^{-1}(\mathcal{L}(\alpha))$
- Example:

$$
\begin{aligned}
& \partial_{a b b}\left(a b^{\star}\right)=\partial_{b}\left(\partial_{b}\left(\partial_{a}\left(a b^{\star}\right)\right)\right)=\partial_{b}\left(\partial_{b}\left(\partial_{a}(a) b^{\star}\right)\right) \\
& =\partial_{b}\left(\partial_{b}\left(\left\{b^{\star}\right\}\right)\right)=\partial_{b}\left(\partial_{b}(b) b^{\star}\right)=\partial_{b}\left(\left\{b^{\star}\right\}\right)=\left\{b^{\star}\right\}
\end{aligned}
$$

- An interesting consequence: $w \in \mathcal{L}(\alpha) \leftrightarrow \varepsilon\left(\partial_{w}(\alpha)\right)=$ true
- Set of all Partial Derivatives: $P D(\alpha)=\bigcup_{w \in \Sigma^{\star}}\left(\partial_{w}(\alpha)\right)$
- Finiteness of $P D$ [Mirkin,Antimirov] : $P D(\alpha) \leq|\alpha|_{\Sigma}+1$

(In-)Equivalence Through Iterated Derivation

$$
\begin{equation*}
\alpha \sim \varepsilon(\alpha) \cup \bigcup_{a \in \Sigma} a\left(\sum \partial_{a}(\alpha)\right) \tag{16}
\end{equation*}
$$

If $\alpha \sim \beta$, then by (16) :

$$
\begin{equation*}
\varepsilon(\alpha) \cup \bigcup_{a \in \Sigma} a\left(\sum \partial_{a}(\alpha)\right) \sim \varepsilon(\beta) \cup \bigcup_{a \in \Sigma} a\left(\sum \partial_{a}(\beta)\right) \tag{17}
\end{equation*}
$$

By (17) and knowing that $w \in \mathcal{L}(\alpha) \leftrightarrow \varepsilon\left(\partial_{w}(\alpha)\right)=$ true, we obtain:

$$
\begin{gather*}
\left(\forall w \in \Sigma^{\star}, \varepsilon\left(\partial_{w}(\alpha)\right)=\varepsilon\left(\partial_{w}(\beta)\right)\right) \leftrightarrow \alpha \sim \beta . \tag{18}\\
\left.\varepsilon\left(\partial_{w}(\alpha)\right) \neq \varepsilon\left(\partial_{w}(\beta)\right)\right) \rightarrow \alpha \nsim \beta, \text { for some } w \in \Sigma^{\star} . \tag{19}
\end{gather*}
$$

The Procedure equivP

Require: $\boldsymbol{S}=\{(\{\alpha\},\{\beta\})\}, H=\emptyset$
Ensure: true or false
1: procedure EquivP (S, H)
2: \quad while $S \neq \emptyset$ do
3: $\quad\left(S_{\alpha}, S_{\beta}\right) \leftarrow P O P(S)$
4: \quad if $\varepsilon\left(S_{\alpha}\right) \neq \varepsilon\left(S_{\beta}\right)$ then return false
end if
$H \leftarrow H \cup\left\{\left(S_{\alpha}, S_{\beta}\right)\right\}$
for $a \in \Sigma$ do
$\left(S_{\alpha}^{\prime}, S_{\beta}^{\prime}\right) \leftarrow \partial_{a}\left(S_{\alpha}, S_{\beta}\right)$
if $\left(S_{\alpha}^{\prime}, S_{\beta}^{\prime}\right) \notin H$ then $S \leftarrow S \cup\left\{\left(S_{\alpha}^{\prime}, S_{\beta}^{\prime}\right)\right\}$

- Construct a bisimulation that leads to (18) or finds a counter-example that prove that such a bisimulation does not exist (19).
- S: Derivatives yet to be processed
- H : Processed derivatives (H is finite)
- if false, then counter-example
end if
end for
14: end while
15: return true
16: end procedure
12:
13:

The Procedure equivP, an example

- Consider $\alpha=(a b)^{\star} a$ and $\beta=a(b a)^{\star}$.
- Then $s_{0}=(\{\alpha, \beta\})=\left(\left\{(a b)^{\star} a\right\},\left\{a(b a)^{\star}\right\}\right)$
- We must show that equivP $\left(\left\{s_{0}\right\}, \emptyset\right)=$ true.
- equivP for such α and β computes

$$
s_{1}=\left(\left\{1, b(a b)^{\star} a\right\},\left\{(b a)^{\star}\right\}\right) \text { and } s_{2}=(\emptyset, \emptyset) .
$$

- Execution traces:

i	S_{i}	H_{i}	drvs.
0	$\left\{s_{0}\right\}$	\emptyset	$\partial_{a}\left(s_{0}\right)=s_{1}, \partial_{b}\left(s_{0}\right)=s_{2}$
1	$\left\{s_{1}, s_{2}\right\}$	$\left\{s_{0}\right\}$	$\partial_{a}\left(s_{1}\right)=s_{2}, \partial_{b}\left(s_{1}\right)=s_{0}$
2	$\left\{s_{2}\right\}$	$\left\{s_{0}, s_{1}\right\}$	$\partial_{a}\left(s_{2}\right)=s_{2}, \partial_{b}\left(s_{2}\right)=s_{2}$
3	\emptyset	$\left\{s_{0}, s_{1}, s_{2}\right\}$	true

Table of Contents

Regular Expression (In-)EquivalenceImplementation in Coq
Experimental Results
Deciding Relation Algebra Equations
(In-)Equivalence of KAT terms
Applications
Conclusions and Future Work

Ingredient 1 : Representation of Derivatives

- Derivatives as dependent records:

```
Record Drv ( }\alpha\beta:re) := mkDrv {
    dp :> set re * set re ;
    w : word ;
    cw : dp = (\partial}\mp@subsup{\partial}{\textrm{w}}{(\alpha),\mp@subsup{\partial}{\textrm{w}}{\prime}}(\beta)
}.
```

Example (Original regular expression)
Definition Drv_1st ($\alpha \beta$:re) : Drv $\alpha \beta$. refine (mkDrv ($\{\alpha\},\{\beta\}$) $\epsilon_{\text {_ }}$). abstract(reflexivity). Defined.

Ingredient 2 : Derivation of Drv terms

- Derivation of Drv terms wrt $a \in \Sigma$:

```
Definition Drv_pdrv(x:Drv \alpha \beta)(a:A) : Drv \alpha \beta.
refine(match x with
    | mkDrv \alpha \beta p w H }
    mkDrv \alpha \beta (pdrvp p a) (w++[a]) -
    end).
abstract((* Proof of }\mp@subsup{\partial}{a}{}(\mp@subsup{\partial}{w}{}(\alpha),\mp@subsup{\partial}{w}{}(\beta))=(\mp@subsup{\partial}{wa}{}(\alpha),\mp@subsup{\partial}{wa}{}(\beta))*))
Defined.
```

- Derivation of Drv terms wrt a set of symbols:

```
Definition Drv_pdrv_set(x:Drv \alpha \beta)(Sig:set A) :
        set (Drv \alpha \beta) :=
    fold (fun a:A # add (Drv_pdrv \alpha \beta x a)) Sig \emptyset.
```

- Ignoring already existing derivatives in H :

Definition Drv_pdrv_set_filtered(x:Drv $\alpha \beta$)
(H:set (Drv $\alpha \beta$) (sig:set A): set (Drv $\alpha \beta$) :=
filter (fun $y \Rightarrow$ negb $(y \in H)$) (Drv_pdrv_set x sig).

Ingredient 3: One Step of Computation

```
Inductive step_case ( }\alpha\beta\mathrm{ :re) : Type :=
|proceed : step_case \alpha \beta
|termtrue : set (Drv \alpha \beta) }->\mathrm{ step_case
    \alpha\beta
Itermfalse : Drv \alpha \beta -> step_case \alpha \beta.
```

- proceed: continue the iterative process;
- termtrue: the procedure must terminate and use the parameter as a witness of equivalence;
- termfalse: the procedure must terminate and use the parameter as a counter-example of equivalence.

```
(*step = lines 8-13, for loop of EquivP*)
Definition step (H S:set (Drv \alpha \beta))(sig:set A) :
    ((set (Drv \alpha\beta) * set (Drv \alpha \beta)) * step_case \alpha \beta) :=
    match choose s with
    INone }=>((H,S),\mathrm{ termtrue }\alpha\betaH
    ISome ( }\mp@subsup{S}{\alpha}{},\mp@subsup{S}{\beta}{})
        if c_of_Drv _ _ ( }\mp@subsup{S}{\alpha}{},\mp@subsup{S}{\beta}{})\mathrm{ then
        let H
            let S' := remove (S S, S ) S in
            let ns := Drv_pdrv_set_filtered \alpha \beta (S\alpha, S S ) H' sig in
                ((H',ns \cup S'),proceed \alpha \beta)
        else
        ((H,S),termfalse \alpha \beta (S\alpha, S S ))
    end.
```


Ingredient 4 : Termination

- Considering

$$
\text { step } \alpha \beta H S=\left(\left(H^{\prime}, S^{\prime}\right), \text { proceed } \alpha \beta\right)
$$

and

$$
S \cap H=\emptyset
$$

- the termination is ensured by:

$$
\left(2^{(|\alpha| \Sigma+1)} \times 2^{\left(|\beta|_{\Sigma+1)}+1\right)-\left|H^{\prime}\right|<\left(2^{\left(|\alpha|_{\Sigma+1}\right)} \times 2^{\left(|\beta|_{\Sigma+1)}\right.}+1\right)-|H| .|c|}\right.
$$

Ingredient 4 : Main function

- iterator :

```
Function iterate ( \(\alpha \beta\) :re) ( \(H\) S:set ( \(\operatorname{Drv} \alpha \beta\) ))
    (sig:set \(A\) ) ( \(D: \operatorname{DP} \alpha \beta \mathrm{h}\) s) \(\{\mathrm{wf}(\operatorname{LLim} \alpha \beta) H\}\) :
        term_cases \(\alpha \beta:=\)
    let \(\left(\left(H^{\prime}, S^{\prime}\right.\right.\), next) \(:=\) step \(H S\) in
    match next with
    |termfalse \(\mathrm{x} \Rightarrow\) NotOk \(\alpha \beta \mathrm{x}\)
    |termtrue \(\mathrm{h} \Rightarrow \mathrm{Ok} \alpha \beta \mathrm{h}\)
    |progress \(\Rightarrow\) iterate \(\alpha \beta H^{\prime} S^{\prime}\) sig (DP_upd \(\alpha \beta H S\)
                        sig D)
    end.
```

- where DP is defined as

```
Inductive DP (h s:set (Drv \alpha \beta)) : Prop :=
| is_dpt : h \cap s = \emptyset -> ह(h) = true }->\mathrm{ DP h s.
```


The function equivP

- wrap iterate into a Boolean function:

```
Definition equivP_aux( }\alpha\beta\mathrm{ :re)(H S:set(Drv 人 }\beta\mathrm{ ))
    (sig:set A)(D:DP \alpha \beta H S):=
    let H' := iterate \alpha \beta H S sig D in
        match H' with
            | Ok _ # true
        | NotOk _ # false
    end.
```

- instantiate with the correct arguments:

```
Definition equivP ( }\alpha\beta\mathrm{ :re) :=
    equivP_aux \alpha \beta\emptyset {Drv_1st \alpha \beta} (setSy \alpha U setSy }\beta\mathrm{ )
            (mkDP_ini \alpha \beta).
```


Correctness

Lemma equiv_re_false :

$$
\forall \alpha \beta, \text { equivP } \alpha \beta=\text { false } \rightarrow \alpha \nsim \beta
$$

1. this only happens when :

$$
\text { iterate } H S=\operatorname{NotOk} \alpha \beta\left(S_{\alpha}, S_{\beta}\right)
$$

2. which means that:

$$
\text { step } H^{\prime} S^{\prime}=\text { termfalse } \alpha \beta\left(S_{\alpha}, S_{\beta}\right)
$$

3. be definition of step we know that:

$$
\varepsilon\left(S_{\alpha}\right) \neq \varepsilon\left(S_{\beta}\right)
$$

4. thus:

$$
\alpha \nsim \beta
$$

Correctness

Lemma equiv_re_true :

$$
\forall \alpha \beta \text {, equivP } \alpha \beta=\text { true } \rightarrow \alpha \sim \beta
$$

1. define the following invariant:

$$
\operatorname{INV}(H, S)=_{\text {def }} \forall x, x \in H \rightarrow \forall a \in \Sigma, \partial_{a}(x) \in S \cup H
$$

2. prove that it holds for step:

$$
\operatorname{INV}(H, S) \rightarrow \text { step } H S=\left(\left(H^{\prime}, S^{\prime}\right), \text { proceed }\right) \rightarrow \operatorname{INV}\left(H^{\prime}, S^{\prime}\right)
$$

3. prove that all derivatives are computed :

$$
\operatorname{INV}(H, S) \rightarrow \text { iterate } H S=0 \mathrm{k}_{__{-}} H^{\prime} \rightarrow I N V\left(H^{\prime}, \emptyset\right)
$$

4. prove that all derivatives $\left(S_{\alpha}, S_{\beta}\right)$ verify $\varepsilon\left(S_{\alpha}\right)=\varepsilon\left(S_{\beta}\right)$
5. thus we obtain $\left.\forall w \in \Sigma^{\star}, \varepsilon\left(\partial_{w}(\alpha)\right)=\varepsilon\left(\partial_{w}(\beta)\right)\right)$
6. from which follows $\alpha \sim \beta$

Completeness

Obtained by trivial case analysis:

- $\alpha \sim \beta$:

1. if equivP $\alpha \beta=$ true : trivial from correctness proof;
2. if equivP $\alpha \beta=\mathrm{false}$: contradiction

- $\alpha \nsim \beta$: by similar reasoning

The Reflexive Tactic

From the soundness results we were able to construct the following tactic:

```
Ltac re_equiv :=
    apply equiv_re_true;vm_compute;
    first [ reflexivity | fail 2 "Regular expressions are not
            equivalent" ].
Ltac re_inequiv :=
    apply equiv_re_false;vm_compute;
        first [ reflexivity | fail 2 "Regular expressions not
            inequivalent" ].
Ltac dec_re :=
    match goal with
    | |-\mathcal{L}(?R1) ~ \mathcal{L}(?R2) # re_equiv
    | |-\mathcal{L}(?R1) \chi \mathcal{L}(?R2) => re_inequiv
    | | - L (?R1) \leq L (?R2) =>
            unfold lleq;change (\mathcal{L}(R1) \cup\mathcal{L}(R2)) with (\mathcal{L}(R1 + R2));
            re_equiv
    | | _ # fail 2 "Not a regular expression (in-)equivalence
            equation."
    end.
```


Table of Contents

> Regular Expression (In-)Equivalence

> Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Performance

Some indicators (10000 pairs of uniform, randomly generated regular expressions):

- $|\alpha|=25$ and 10 symbols : 0.142 (eq) and 0.025 (ineq)
- $|\alpha|=50$ and 20 symbols : 0.446 (eq) and 0.060 (ineq)
- $|\alpha|=100$ and 30 symbols: 1.142 s (eq) and 0.112 s (ineq)
- $|\alpha|=250$ and 40 symbols : 5.142 s (eq) and 0.147 s (ineq)
- $|\alpha|=1000$ and 50 symbols : 46.037s (eq) and 0.280 (ineq)

alg. $/(k, n)$	$(20,200)$		$(50,500)$		$(50,1000)$	
	eq	ineq	eq	ineq	eq	ineq
equivP	2.211	0.048	9.957	0.121	17.768	0.149
ATBR	3.001	1.654	5.876	2.724	16.682	12.448

Table: Comparison of the performances (ATBR - Braibant \& Pous).

Regular expression generated using the FAdo toolbox: http://http://fado.dcc.fc.up.pt/

Table of Contents

> Regular Expression (In-)Equivalence

> Implementation in Coq

> Experimental Results

> Deciding Relation Algebra Equations
> (In-)Equivalence of KAT terms

> Applications

Conclusions and Future Work

Relations vs. Regular expressions

Claim: Equations over relation can be decided using regular expressions

First ingredient:

```
Fixpoint reRel(v:nat }->\mathrm{ relation B)( }\alpha:re) : relation B :=
    match r with
    | 0 F EmpRel
    | 1 m IdRel
    | 'a m v a
    | x + y # UnionRel (reRel v x) (reRel v y)
    | x · y }=>\mathrm{ CompRel (reRel v x) (reRel v y)
    | x* }=>\mathrm{ TransRefl (reRel v x)
    end.
```


Example

Consider:

- $\Sigma=\{a, b\}$,
- R_{a} and R_{b} : binary relations over B ,
- a regular expression $\alpha=a(b+1)$
- v : a function that maps a to the relation R_{a}, and b to the relation R_{b}.
- The computation of reRel $\alpha \mathrm{v}$ gives the relation $R_{a} \circ\left(R_{b} \cup \mathcal{I}\right)$, and can be described as follows:

$$
\begin{aligned}
\text { reRel } \alpha v & =\operatorname{reRel}(a(b+1)) v \\
& =\operatorname{CompRel}(\text { reRel a v })(\text { reRel }(b+1) v) \\
& =\operatorname{CompRel} R_{a}(\text { reRel }(b+1) v) \\
& =\operatorname{CompRel} R_{a}(\text { UnionRel }(\text { reRel b v })(\text { reRel } 1 v)) \\
& =\operatorname{CompRel} R_{a}\left(\text { UnionRel } R_{b}(r e R e l ~ 1 v)\right) \\
& =\operatorname{CompRel} R_{a}\left(\text { UnionRel } R_{b} / d R e l\right) . \\
& \left(=R_{a} \circ\left(R_{b} \cup \mathcal{I}\right)\right)
\end{aligned}
$$

From Regular Expressions to Relations and back

$$
\alpha \sim \beta \rightarrow \operatorname{reRel} v \alpha \sim_{\mathcal{R}} \operatorname{reRel} v \beta
$$

This theorem allows for

- the design of a Coq tactic that transforms a goal of the form reRel $v \alpha \sim_{\mathcal{R}}$ reRel $v \beta$ into a goal stating that $\alpha \sim \beta$
- and then applies the tactic for regular expressions (in-)equivalence to close the proof.

Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Kleene Algebra with tests

Kleene Algebra with tests (KAT): KA extended with a boolean algebra $\left(K, T,+, \cdot,^{\star},{ }^{-}, 0,1\right)$ such that

- $\left(K,+, \cdot,^{\star}, 0,1\right)$ is a KA,
- $\left(T,+, \cdot,^{-}, 0,1\right)$ is a Boolean algebra
- $T \subseteq K$
- KAT satisfies the axioms of KA and the axioms of Boolean algebra, that is, the set of axioms (1-15) and the following ones, for $b, c, d \in T$:

$$
\begin{align*}
b c & =c b \tag{20}\\
b+(c d) & =(b+c)(b+d) \tag{21}\\
\overline{b+c} & =\bar{b} \bar{c} \tag{22}\\
b+\bar{b} & =1 \tag{23}\\
b b & =b \tag{24}\\
b+1 & =1 \tag{25}\\
b+0 & =b \tag{26}\\
\overline{b c} & =\bar{b}+\bar{c} \tag{27}\\
b \bar{b} & =0 \tag{28}\\
\overline{\bar{b}} & =b \tag{29}
\end{align*}
$$

Why formalizing Kleene Algebra with tests?

- Tests embedded in expressions \longrightarrow encoding of imperative program constructions
- KAT :
- KAT subsumes (can encode) PHL;
- Capture and verify properties of simple imperative programs. An equational way to deal with partial correctness and program equivalence.
- Consequently, proving that a given program C is partially correct using the deductive system of PHL can be reduced to checking if C is partially correct by equational reasoning in KAT.
- Moreover, some formulas of KAT can be reduced to standard equalities and the equalities can be decided automatically.

KAT terms

- $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$: set of primitive tests
- $\overline{\mathcal{B}}=\{\bar{b} \mid b \in \mathcal{B}\}$.
- $I \in \mathcal{B} \cup \overline{\mathcal{B}}$ is called a literal.
- An atom α is a finite sequence of literals $I_{1} I_{2} \ldots I_{n}$, such that each l_{i} is either b_{i} or $\overline{b_{i}}$, for $1 \leq i \leq n$, where $n=|\mathcal{B}|$.
- At: set of atoms
- $\alpha \leq \boldsymbol{b} \triangleq \alpha \rightarrow \boldsymbol{b}$ is a propositional tautology (with $\alpha \in$ At and $b \in \mathcal{B}$,).
- tests are booleans expressions inductively defined by:
- 0 and 1 are tests
- if $b \in \mathcal{B}$ then b is a test
- if t_{1} and t_{2} are tests then $t_{1}+t_{2}$, $t_{1} \cdot t_{2}$, and $\overline{t_{1}}$ are tests
- KAT terms $=$ KA terms (i.e. regular expressions) + tests, inductively defined by:
- a test t is a KAT term
- if $p \in \Sigma$ then p is a KAT term
- if e_{1} and e_{2} are KAT terms, then so are $e_{1}+e_{2}, e_{1} e_{2}$, and e_{1}^{\star}.

Guarded Strings

- A guarded string is a sequence $x=\alpha_{0} p_{0} \alpha_{1} p_{1} \ldots p_{(n-1)} \alpha_{n}$, with $\alpha_{i} \in$ At and $p_{i} \in \Sigma$.

Regular Languages	Language Theoretic Model of KAT
word	guarded string
regular expression	KAT Term
concatenation	fusion of compatible guarded string
Languages	set of guarded strings

- ϵ_{α} defined by induction: $\epsilon_{\alpha}(p)=$ false, $\epsilon_{\alpha}\left(e^{*}\right)=$ true, $\epsilon_{\alpha}(t)=$ true if $\alpha \leq t, \epsilon_{\alpha}(t)=$ false otherwise, $\epsilon_{\alpha}\left(e_{1}+e_{2}\right)=\epsilon_{\alpha}\left(e_{1}\right) \vee \epsilon_{\alpha}\left(e_{2}\right), \epsilon_{\alpha}\left(e_{1} e_{2}\right)=\epsilon_{\alpha}\left(e_{1}\right) \wedge \epsilon_{\alpha}\left(e_{2}\right)$
- $E(e)$ is defined by $\left\{\alpha \in A t \mid \epsilon_{\alpha}(e)=\right.$ true $\}$

Kleene Algebra with tests

Let $\alpha p \in(\mathrm{At} \cdot \Sigma)$ and let e be a KAT term. The set $\partial_{\alpha p}(e)$ of partial derivatives of e with respect to αp is inductively defined by

$$
\begin{aligned}
\partial_{\alpha p}(t) & =\emptyset \\
\partial_{\alpha p}(q) & = \begin{cases}\{1\} & \text { ifp } \equiv q, \\
\emptyset & \text { otherwise. }\end{cases} \\
\partial_{\alpha p}\left(e_{1}+e_{2}\right) & =\partial_{\alpha p}\left(e_{1}\right) \cup \partial_{\alpha p}\left(e_{2}\right) \\
\partial_{\alpha p}\left(e_{1} e_{2}\right) & = \begin{cases}\partial_{\alpha p}\left(e_{1}\right) e_{2} \cup \partial_{\alpha p}\left(e_{2}\right) & \text { if } \varepsilon_{\alpha}\left(e_{1}\right)=\text { true }, \\
\partial_{\alpha p}\left(e_{1}\right) e_{2}, & \text { otherwise. }\end{cases} \\
\partial_{\alpha p}\left(e^{\star}\right) & =\partial_{\alpha p}(e) e^{\star}
\end{aligned}
$$

KAT Partial derivatives for words $w \in(A t \cdot \Sigma)^{\star}$, inductively by $\partial_{\epsilon}(e)=\{e\}$, and $\partial_{w \alpha p}(e)=\partial_{\alpha p}\left(\partial_{w}(e)\right)$.
The (proven finite) set of all partial derivatives of a KAT term is the set

$$
\partial_{(\mathrm{At} \cdot \Sigma)^{\star}}(e)=\bigcup_{w \in(\mathrm{At} \cdot \Sigma)^{\star}}\left\{e^{\prime} \mid e^{\prime} \in \partial_{w}(e)\right\}
$$

An Example

Example

Let $\mathcal{B}=\left\{b_{1}, b_{2}\right\}, \Sigma=\{p, q\}$, and $e=b_{1} p\left(b_{1}+b_{2}\right) q$. The partial derivative of e with respect to the sequence $b_{1} b_{2} p \overline{b_{1}} b_{2} q$ is the following:

$$
\begin{aligned}
\partial_{b_{1} b_{2} p \overline{b_{1}} b_{2} q}(e) & =\partial_{b_{1} b_{2} p \overline{b_{1}} b_{2} q}\left(b_{1} p\left(b_{1}+b_{2}\right) q\right) \\
& =\partial_{\overline{b_{1}} b_{2} q}\left(\partial_{b_{1} b_{2} p}\left(b_{1} p\left(b_{1}+b_{2}\right) q\right)\right) \\
& =\partial_{\overline{b_{1}} b_{2} q}\left(\partial_{b_{1} b_{2} p}\left(b_{1}\right)\left(p\left(b_{1}+b_{2}\right) q\right) \cup \partial_{b_{1} b_{2} p}\left(p\left(b_{1}+b_{2}\right) q\right)\right) \\
& =\partial_{\overline{b_{1}} b_{2} q}\left(\partial_{b_{1} b_{2} p}\left(b_{1}\right)\left(p\left(b_{1}+b_{2}\right) q\right)\right) \cup \partial_{\overline{b_{1}} b_{2} q}\left(\partial_{b_{1} b_{2} p}\left(p\left(b_{1}+b_{2}\right) q\right)\right) \\
& =\partial_{\overline{b_{1}} b_{2} q}\left(\partial_{b_{1} b_{2} p}(p)\left(b_{1}+b_{2}\right) q\right) \\
& =\partial_{\overline{b_{1}} b_{2} q}\left(\left(b_{1}+b_{2}\right) q\right) \\
& =\partial_{\overline{b_{1}} b_{2} q}\left(b_{1}+b_{2}\right) q \cup \partial_{\overline{b_{1}} b_{2} q}(q) \\
& =\partial_{\overline{b_{1}} b_{2 q} q}(q) \\
& =\{1\} .
\end{aligned}
$$

A Procedure for KAT Terms Equivalence

Let e be a KAT term,

$$
e \sim \mathrm{E}(e) \cup\left(\bigcup_{\alpha p \in(\mathrm{At} \cdot \Sigma)} \alpha p \partial_{\alpha p}(e)\right)
$$

Therefore, if e_{1} and e_{2} are KAT terms, we can reformulate the equivalence $e_{1} \sim e_{2}$ as
$\mathrm{E}\left(e_{1}\right) \cup\left(\bigcup_{\alpha p \in(\mathrm{At} \cdot \Sigma)} \alpha p \partial_{\alpha p}\left(e_{1}\right)\right) \sim \mathrm{E}\left(e_{2}\right) \cup\left(\bigcup_{\alpha p \in(\mathrm{At} \cdot \Sigma)} \alpha p \partial_{\alpha p}\left(e_{2}\right)\right)$,
which is tantamount at checking that $\forall \alpha \in A t, \varepsilon_{\alpha}\left(e_{1}\right)=\varepsilon_{\alpha}\left(e_{2}\right)$ and $\forall \alpha p \in(\operatorname{At} \cdot \Sigma), \partial_{\alpha p}\left(e_{1}\right) \sim \partial_{\alpha p}\left(e_{2}\right)$ hold.

A Procedure for KAT Terms Equivalence

We can finitely iterate over the previous equations and reduce the (in)equivalence of e_{1} and e_{2} to one of the next equivalences:

$$
\begin{equation*}
e_{1} \sim e_{2} \leftrightarrow \forall \alpha \in \operatorname{At}, \forall w \in(\operatorname{At} \cdot \Sigma)^{\star}, \varepsilon_{\alpha}\left(\partial_{w}\left(e_{1}\right)\right)=\varepsilon_{\alpha}\left(\partial_{w}\left(e_{2}\right)\right) \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{1} \nsucc e_{2} \leftrightarrow\left(\exists w \exists \alpha, \varepsilon_{\alpha}\left(\partial_{w}\left(e_{1}\right)\right) \neq \varepsilon_{\alpha}\left(\partial_{w}\left(e_{2}\right)\right)\right) . \tag{31}
\end{equation*}
$$

The procedure equivKAT

Require: $S=\left\{\left(\left\{e_{1}\right\},\left\{e_{2}\right\}\right)\right\}, H=\emptyset$
Ensure: true or false
1: procedure EquivKAT(S,H)
2: \quad while $S \neq \emptyset$ do
3: $\quad(\Gamma, \Delta) \leftarrow P O P(S)$
4: \quad for $\alpha \in$ At do
5: if $\varepsilon_{\alpha}(\Gamma) \neq \varepsilon_{\alpha}(\Delta)$ then
6: return false end if
end for
$H \leftarrow H \cup\{(\Gamma, \Delta)\}$
for $\alpha p \in(A t \cdot \Sigma)$ do
$(\Lambda, \Theta) \leftarrow \partial_{\alpha \rho}(\Gamma, \Delta)$
if $(\wedge, \Theta) \notin H$ then
$S \leftarrow S \cup\{(\Lambda, \Theta)\}$
end if
end for
16: end while
17: return true
18: end procedure

- lines 4-8 and 10-15 : exponential behavior
- Formally proved terminating and correct
- COQ tactic based on equivKAT

Example

Let $\mathcal{B}=\{b\}$ and let $\Sigma=\{p\}$, are $e_{1}=(p b)^{\star} p$ and $e_{2}=p(b p)^{\star}$ equivalent? Consider $s_{0}=\left(\left\{(p b)^{\star} p\right\},\left\{p(b p)^{\star}\right\}\right)$, it is enough to show that equivKAT $\left(\left\{s_{0}\right\}, \emptyset\right)=$ true.
The first step of the computation generates the two new following pairs of derivatives:

$$
\begin{aligned}
& \partial_{b p}\left(e_{1}, e_{2}\right)=\left(\left\{1, b(p b)^{\star}\right\},\left\{(b p)^{\star}\right\}\right), \\
& \partial_{\bar{b} p}\left(e_{1}, e_{2}\right)=\left(\left\{1, b(p b)^{\star}\right\},\left\{(b p)^{\star}\right\}\right) .
\end{aligned}
$$

Then, $\left(e_{1}, e_{2}\right)$ is added to the historic set H and the next iteration of equivKAT considers $S=\left\{s_{1}\right\}$, with $s_{1}=\left(\left\{1, b(p b)^{\star}\right\},\left\{(b p)^{\star}\right\}\right)$, and $H=\left\{s_{0}\right\}$.

$$
\begin{aligned}
& \partial_{b p}\left(\left\{1, b(p b)^{\star}\right\},\left\{(b p)^{\star}\right\}\right)=\left(\left\{b(p b)^{\star}\right\},\left\{(b p)^{\star}\right\}\right), \\
& \partial_{\bar{b} p}\left(\left\{1, b(p b)^{\star}\right\},\left\{(b p)^{\star}\right\}\right)=(\emptyset, \emptyset)
\end{aligned}
$$

The next iteration of the procedure will have $S=\left\{s_{2}, s_{3}\right\}$ and $H=\left\{s_{0}, s_{1}\right\}$, with $s_{2}=\left(\left\{b(p b)^{\star}\right\},\left\{(b p)^{\star}\right\}\right)$ and $s_{3}=(\emptyset, \emptyset)$.
Since the derivative of s_{2} is either s_{2} or s_{3} and since the same holds for the derivatives of s_{3}, the procedure will terminate in two iterations with $S=\emptyset$ and $H=\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}$. Hence, we conclude that $e_{1} \sim e_{2}$.

Table of Contents

> Regular Expression (In-)Equivalence

> Implementation in Coq

> Experimental Results

> Deciding Relation Algebra Equations
> (In-)Equivalence of KAT terms

> Applications

Conclusions and Future Work

Program Equivalence

if e_{1} and e_{2} are terms encoding the IMP programs C_{1} and C_{2}, and if the Boolean test B is encoded by the KAT test t, then we can encode sequence, conditional instructions and while loops in KAT as follows.

$$
\begin{gathered}
C_{1} ; C_{2} \triangleq e_{1} e_{2}, \\
\text { if } B \text { then } C_{1} \text { else } C_{2} \mathrm{fi} \triangleq\left(t e_{1}+\bar{t} e_{2}\right), \\
\text { while } B \text { do } C_{1} \text { end } \triangleq\left(t e_{1}\right)^{\star} \bar{t} .
\end{gathered}
$$

Example

Let $\mathcal{B}=\{b, c\}$ and $\Sigma=\{p, q\}$ be the set of primitive tests and set of primitive programs, respectively, and let $P 1$ and $P 2$ be the following two programs:
$P_{1} \triangleq$ while B do C_{1}; while B^{\prime} do C_{2} end end
$P_{2} \triangleq$ if B then C_{1}; while $B+B^{\prime}$ do if B^{\prime} then C_{2} else C_{1} fi end else skipfi
Let $C_{1}=p, C_{2}=q, B=b$ and $B^{\prime}=c$. The programs P_{1} and P_{2} are encoded in KAT as
$e_{1}=\left(b p\left((c q)^{\star} \bar{c}\right)\right)^{\star} \bar{b}$ and $e_{2}=b p((b+c)(c q+\bar{c} p))^{\star} \overline{(b+c)}+\bar{b}$,
respectively. The procedure decides the equivalence $e_{1} \sim e_{2}$ in 0.053 seconds.

Program Correctness

This methodology can be extended in order to encode a non trivial subset of Hoare Logic and allows classical program verification based on contracts (pre-post condition, invariants).

Table of Contents

> Regular Expression (In-)Equivalence

> Implementation in Coq

> Experimental Results

> Deciding Relation Algebra Equations
> (In-)Equivalence of KAT terms

> Applications

Conclusions and Future Work

Main conclusions and results

- efficient procedure to decide regular expression equivalence ;
- able to solve equations involving relations;
- a simple extension to decide KAT terms equivalence.
- Application to program verification, but mainly program equivalence
- Extraction to Caml
- Improve the performance of equivKAT in order to handle bigger (in)-equivalences (on-going work)
- Extension to Schematic Kleene Algebra with test (widening the actual HL coverage)
- Modal (and concurrent) Kleene Algebra (Equivalence for parallel or concurrent Programs, timing behavior)
- Embedding into program verification frameworks (why3, etc...)
- Application Runtime Verification (e.g. of Ada/Spark programs) (ongoing work)

Thank you!

supplementary slides

Finiteness of Partial Derivatives

- Recursive definition of PD via support [Champarnaud and Ziadi]:

$$
\begin{aligned}
\pi(\emptyset) & =\emptyset \\
\pi(\varepsilon) & =\emptyset \\
\pi(a) & =\{1\} \\
\pi(\alpha+\beta) & =\pi(\alpha) \cup \pi(\beta) \\
\pi(\alpha \beta) & =\pi(\alpha) \beta \cup \pi(\beta) \\
\pi\left(\alpha^{\star}\right) & =\pi(\alpha) \alpha^{\star}
\end{aligned}
$$

- Another way of looking at PD:

$$
P D(\alpha)=\{\alpha\} \cup \pi(\alpha)
$$

- Again, the upper bound of $P D$:

$$
\begin{gathered}
|\pi(\alpha)| \leq|\alpha|_{\Sigma} \\
|P D(\alpha)| \leq|\alpha|_{\Sigma}+1
\end{gathered}
$$

