
Deciding Kleene Algebra Terms (In-)Equivalence
in Coq

Nelma Moreira, David Pereira and Simão Melo de Sousa

Tallinn
September 2016

Outline

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Kleene Algebra
Idempotent semiring
(K ,+, ·, 0, 1):

x + x = x (1)
x + 0 = x (2)
x + y = y + x (3)

x + (y + z) = (x + y) + z (4)
0x = 0 (5)
x0 = 0 (6)
1x = x (7)
x1 = x (8)

x(yz) = (xy)z (9)
x(y + z) = xy + xz (10)
(x + y)z = xz + yz . (11)

Consider x ≤ y , x + y = y .

Kleene Algebra (KA): (K ,+, ·,? , 0, 1)
such that the sub-algebra (K ,+, ·, 0, 1)
is an idempotent semiring and that the
operator ? is characterized by the
following axioms:

1 + pp? ≤ p? (12)
1 + p?p ≤ p? (13)

q + pr ≤ r → p?q ≤ r (14)
q + rp ≤ r → qp? ≤ r (15)

Standard Model of KA: (RLΣ,∪, ·,? , ∅, {ε})

Regular expressions and Languages

I Regular expression:

α, β ::= 0 | 1 | a ∈ Σ |α + β | αβ | α?

I Language denoted by a regular expression:

L(0) = ∅ L(1) = {ε} L(a) = {a}
L(α + β) = L(α) ∪ L(β) L(αβ) = L(α)L(β) L(α?) = L(α)?

I Regular expression equivalence:

α ∼ β iff L(α) = L(β)

I Nullability:

ε(α) =

{
true if ε ∈ L(α)
false if ε 6∈ L(α)

Partial Derivatives

I Definition of Partial Derivative wrt a ∈ Σ [Mirkin,Antimirov]:

∂a(0) = ∅
∂a(1) = ∅

∂a(b) =

{
{1} if a ≡ b
∅ otherwise

∂a(α + β) = ∂a(α) ∪ ∂a(β)

∂a(αβ) =

{
∂a(α)β ∪ ∂a(β) if ε(α) = true,
∂a(α)β otherwise.

∂a(α?) = ∂a(α)α?

Partial Derivatives (cont.)

I Partial Derivatives wrt Words:

∂ε(α) = {α}
∂wa(α) = ∂a(∂w (α)).

I Language of Partial Derivative: L(∂a(α)) = a−1(L(α))

I Example:
∂abb(ab?) = ∂b(∂b(∂a(ab?))) = ∂b(∂b(∂a(a)b?))
= ∂b(∂b({b?})) = ∂b(∂b(b)b?) = ∂b({b?}) = {b?}

I An interesting consequence: w ∈ L(α)↔ ε(∂w (α)) = true

I Set of all Partial Derivatives: PD(α) =
⋃

w∈Σ?(∂w (α))

I Finiteness of PD [Mirkin,Antimirov] : PD(α) ≤ |α|Σ + 1

(In-)Equivalence Through Iterated Derivation

α ∼ ε(α) ∪
⋃
a∈Σ

a(
∑

∂a(α)) (16)

If α ∼ β, then by (16) :

ε(α) ∪
⋃
a∈Σ

a(
∑

∂a(α)) ∼ ε(β) ∪
⋃
a∈Σ

a(
∑

∂a(β)) (17)

By (17) and knowing that w ∈ L(α)↔ ε(∂w (α)) = true, we
obtain:

(∀w ∈ Σ?, ε(∂w (α)) = ε(∂w (β)))↔ α ∼ β. (18)

ε(∂w (α)) 6= ε(∂w (β)))→ α 6∼ β, for some w ∈ Σ?. (19)

The Procedure equivP
Require: S = {({α}, {β})}, H = ∅
Ensure: true or false

1: procedure EquivP(S , H)
2: while S 6= ∅ do
3: (Sα,Sβ)← POP(S)
4: if ε(Sα) 6= ε(Sβ) then
5: return false
6: end if
7: H ← H ∪ {(Sα,Sβ)}
8: for a ∈ Σ do
9: (S ′

α,S
′
β)← ∂a(Sα,Sβ)

10: if (S ′
α,S

′
β) 6∈ H then

11: S ← S ∪ {(S ′
α,S

′
β)}

12: end if
13: end for
14: end while
15: return true
16: end procedure

I Construct a bisimulation that leads to
(18) or finds a counter-example that
prove that such a bisimulation does
not exist (19).

I S : Derivatives yet to be processed
I H: Processed derivatives (H is finite)
I if false, then counter-example

The Procedure equivP, an example

I Consider α = (ab)?a and β = a(ba)?.
I Then s0 = ({α, β}) = ({(ab)?a}, {a(ba)?})
I We must show that equivP({s0}, ∅) = true.
I equivP for such α and β computes

s1 = ({1, b(ab)?a}, {(ba)?}) and s2 = (∅, ∅).
I Execution traces:

i Si Hi drvs.
0 {s0} ∅ ∂a(s0) = s1, ∂b(s0) = s2
1 {s1, s2} {s0} ∂a(s1) = s2, ∂b(s1) = s0
2 {s2} {s0, s1} ∂a(s2) = s2, ∂b(s2) = s2
3 ∅ {s0, s1, s2} true

Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Ingredient 1 : Representation of Derivatives
I Derivatives as dependent records:

Record Drv (α β:re) := mkDrv {
dp :> set re * set re ;
w : word ;
cw : dp = (∂w(α),∂w(β))
}.

Example (Original regular expression)

Definition Drv_1st (α β:re) : Drv α β.
refine(mkDrv ({α},{β}) ε _).
abstract(reflexivity).
Defined.

Ingredient 2 : Derivation of Drv terms
I Derivation of Drv terms wrt a ∈ Σ:

Definition Drv_pdrv(x:Drv α β)(a:A) : Drv α β.
refine(match x with

| mkDrv α β p w H ⇒
mkDrv α β (pdrvp p a) (w++[a]) _

end).
abstract((* Proof of ∂a(∂w (α), ∂w (β)) = (∂wa(α), ∂wa(β)) *)).
Defined.

I Derivation of Drv terms wrt a set of symbols:

Definition Drv_pdrv_set(x:Drv α β)(Sig:set A) :
set (Drv α β) :=

fold (fun a:A ⇒ add (Drv_pdrv α β x a)) Sig ∅.

I Ignoring already existing derivatives in H:

Definition Drv_pdrv_set_filtered(x:Drv α β)
(H:set(Drv α β))(sig:set A):set (Drv α β) :=
filter (fun y ⇒ negb (y ∈ H)) (Drv_pdrv_set x sig).

Ingredient 3 : One Step of Computation

Inductive step_case (α β:re) : Type :=
|proceed : step_case α β
|termtrue : set (Drv α β) → step_case

α β
|termfalse : Drv α β → step_case α β.

I proceed: continue the iterative
process;

I termtrue: the procedure must
terminate and use the parameter as
a witness of equivalence;

I termfalse: the procedure must
terminate and use the parameter as
a counter-example of equivalence.

(*step = lines 8-13, for loop of EquivP*)
Definition step (H S:set (Drv α β))(sig:set A) :
((set (Drv αβ) * set (Drv α β)) * step_case α β) :=
match choose s with
|None ⇒ ((H,S),termtrue α β H)
|Some (Sα,Sβ) ⇒
if c_of_Drv _ _ (Sα,Sβ) then
let H ′ := add (Sα,Sβ) H in
let S ′ := remove (Sα,Sβ) S in
let ns := Drv_pdrv_set_filtered α β (Sα,Sβ) H ′ sig in
((H ′,ns ∪ S ′),proceed α β)

else
((H,S),termfalse α β (Sα,Sβ))

end.

Ingredient 4 : Termination
I Considering

step α β H S = ((H ′,S ′),proceed α β)

and
S ∩ H = ∅

I the termination is ensured by:

(2(|α|Σ+1)×2(|β|Σ+1)+1)−|H ′| < (2(|α|Σ+1)×2(|β|Σ+1)+1)−|H|

Ingredient 4 : Main function
I iterator :

Function iterate(α β:re)(H S:set (Drv α β))
(sig:set A)(D:DP α β h s){wf (LLim α β) H}:

term_cases α β :=
let ((H ′,S ′,next) := step H S in
match next with
|termfalse x ⇒ NotOk α β x
|termtrue h ⇒ Ok α β h
|progress ⇒ iterate α β H ′ S ′ sig (DP_upd α β H S

sig D)
end.

I where DP is defined as

Inductive DP (h s:set (Drv α β)) : Prop :=
| is_dpt : h ∩ s = ∅ → ε(h) = true → DP h s.

The function equivP
I wrap iterate into a Boolean function:

Definition equivP_aux(α β:re)(H S:set(Drv α β))
(sig:set A)(D:DP α β H S):=
let H ′ := iterate α β H S sig D in
match H ′ with
| Ok _ ⇒ true
| NotOk _ ⇒ false
end.

I instantiate with the correct arguments:

Definition equivP (α β:re) :=
equivP_aux α β ∅ {Drv_1st α β} (setSy α ∪ setSy β)

(mkDP_ini α β).

Correctness

Lemma equiv_re_false :
∀ α β, equivP α β = false → α 6∼ β

1. this only happens when :

iterate H S = NotOk α β (Sα,Sβ)

2. which means that:

step H ′ S ′ = termfalse α β (Sα,Sβ)

3. be definition of step we know that:

ε(Sα) 6= ε(Sβ)

4. thus:
α 6∼ β

Correctness
Lemma equiv_re_true :
∀ α β, equivP α β = true → α ∼ β

1. define the following invariant:

INV (H,S) =def ∀x , x ∈ H → ∀a ∈ Σ, ∂a(x) ∈ S ∪ H

2. prove that it holds for step:

INV (H,S)→ step H S = ((H ′, S ′), proceed)→ INV (H ′, S ′)

3. prove that all derivatives are computed :

INV (H, S)→ iterate H S = Ok__H ′ → INV (H ′, ∅)

4. prove that all derivatives (Sα, Sβ) verify ε(Sα) = ε(Sβ)
5. thus we obtain ∀w ∈ Σ?, ε(∂w (α)) = ε(∂w (β)))
6. from which follows α ∼ β

Completeness

Obtained by trivial case analysis:
I α ∼ β:

1. if equivP α β = true : trivial from correctness proof;
2. if equivP α β = false : contradiction

I α 6∼ β: by similar reasoning

The Reflexive Tactic
From the soundness results we were able to construct the following
tactic:

Ltac re_equiv :=
apply equiv_re_true;vm_compute;
first [reflexivity | fail 2 "Regular expressions are not

equivalent"].

Ltac re_inequiv :=
apply equiv_re_false;vm_compute;
first [reflexivity | fail 2 "Regular expressions not

inequivalent"].

Ltac dec_re :=
match goal with
| |- L(?R1) ∼ L(?R2) ⇒ re_equiv
| |- L(?R1) 6∼ L(?R2) ⇒ re_inequiv
| |- L(?R1) ≤ L(?R2) ⇒

unfold lleq;change (L(R1) ∪ L(R2)) with (L(R1 + R2));
re_equiv

| |- _ ⇒ fail 2 "Not a regular expression (in−)equivalence
equation."

end.

Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Performance
Some indicators (10000 pairs of uniform, randomly generated
regular expressions):

I |α| = 25 and 10 symbols : 0.142 (eq) and 0.025 (ineq)
I |α| = 50 and 20 symbols : 0.446 (eq) and 0.060 (ineq)
I |α| = 100 and 30 symbols : 1.142s (eq) and 0.112s (ineq)
I |α| = 250 and 40 symbols : 5.142s (eq) and 0.147s (ineq)
I |α| = 1000 and 50 symbols : 46.037s (eq) and 0.280 (ineq)

alg./(k , n) (20, 200) (50, 500) (50, 1000)

eq ineq eq ineq eq ineq
equivP 2.211 0.048 9.957 0.121 17.768 0.149
ATBR 3.001 1.654 5.876 2.724 16.682 12.448

Table: Comparison of the performances (ATBR - Braibant & Pous).

Regular expression generated using the FAdo toolbox:
http://http://fado.dcc.fc.up.pt/

http://http://fado.dcc.fc.up.pt/

Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Relations vs. Regular expressions

Claim: Equations over relation can be decided using regular
expressions

First ingredient:

Fixpoint reRel(v:nat→ relation B)(α:re) : relation B :=
match r with
| 0 ⇒ EmpRel
| 1 ⇒ IdRel
| ‘a ⇒ v a
| x + y ⇒ UnionRel (reRel v x) (reRel v y)
| x · y ⇒ CompRel (reRel v x) (reRel v y)
| x? ⇒ TransRefl (reRel v x)
end.

Example
Consider:

I Σ = {a, b},
I Ra and Rb : binary relations over B,
I a regular expression α = a(b + 1)
I v : a function that maps a to the relation Ra, and b to the

relation Rb.
I The computation of reRel α v gives the relation

Ra ◦ (Rb ∪ I), and can be described as follows:

reRel α v = reRel(a(b + 1)) v
= CompRel(reRel a v)(reRel (b + 1) v)
= CompRel Ra (reRel (b + 1) v)
= CompRel Ra (UnionRel (reRel b v)(reRel 1 v))
= CompRel Ra (UnionRel Rb(reRel 1 v))
= CompRel Ra (UnionRel RbIdRel).
(= Ra ◦ (Rb ∪ I))

From Regular Expressions to Relations and back

α ∼ β → reRel v α ∼R reRel v β

This theorem allows for
I the design of a Coq tactic that transforms a goal of the form

reRel v α ∼R reRel v β into a goal stating that α ∼ β
I and then applies the tactic for regular expressions

(in-)equivalence to close the proof.

Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Kleene Algebra with tests

Kleene Algebra with tests (KAT):
KA extended with a boolean
algebra (K ,T ,+, ·,? ,− , 0, 1)
such that

I (K ,+, ·,? , 0, 1) is a KA,
I (T ,+, ·,− , 0, 1) is a Boolean

algebra
I T ⊆ K
I KAT satisfies the axioms of

KA and the axioms of
Boolean algebra, that is, the
set of axioms (1–15) and the
following ones, for
b, c , d ∈ T :

bc = cb (20)
b + (cd) = (b + c)(b + d) (21)

b + c = bc (22)

b + b = 1 (23)
bb = b (24)

b + 1 = 1 (25)
b + 0 = b (26)

bc = b + c (27)

bb = 0 (28)

b = b (29)

Why formalizing Kleene Algebra with tests?

I Tests embedded in expressions −→ encoding of imperative
program constructions

I KAT :
I KAT subsumes (can encode) PHL;
I Capture and verify properties of simple imperative programs.

An equational way to deal with partial correctness and
program equivalence.

I Consequently, proving that a given program C is partially
correct using the deductive system of PHL can be reduced
to checking if C is partially correct by equational reasoning in
KAT.

I Moreover, some formulas of KAT can be reduced to standard
equalities and the equalities can be decided automatically.

KAT terms
I B = {b1, . . . , bn}: set of

primitive tests
I B = {b | b ∈ B}.
I l ∈ B ∪ B is called a literal.
I An atom α is a finite

sequence of literals l1l2 . . . ln,
such that each li is either bi
or bi , for 1 ≤ i ≤ n, where
n = |B|.

I At: set of atoms
I α ≤ b , α→ b is a

propositional tautology (with
α ∈ At and b ∈ B,).

I tests are booleans expressions
inductively defined by:

I 0 and 1 are tests
I if b ∈ B then b is a test
I if t1 and t2 are tests then t1 + t2,

t1 · t2, and t1 are tests
I KAT terms = KA terms (i.e.

regular expressions) + tests,
inductively defined by:

I a test t is a KAT term
I if p ∈ Σ then p is a KAT term
I if e1 and e2 are KAT terms, then

so are e1 + e2, e1e2, and e?1 .

Guarded Strings

I A guarded string is a sequence x = α0p0α1p1 . . . p(n−1)αn,
with αi ∈ At and pi ∈ Σ.

Regular Languages Language Theoretic Model of KAT
word guarded string
regular expression KAT Term
concatenation fusion of compatible guarded string
Languages set of guarded strings

I εα defined by induction: εα(p) = false, εα(e∗) = true,
εα(t) = true if α ≤ t, εα(t) = false otherwise,
εα(e1 + e2) = εα(e1) ∨ εα(e2), εα(e1e2) = εα(e1) ∧ εα(e2)

I E (e) is defined by {α ∈ At | εα(e) = true}

Kleene Algebra with tests

Let αp ∈ (At · Σ) and let e be a KAT term. The set ∂αp(e) of
partial derivatives of e with respect to αp is inductively defined by

∂αp(t) = ∅

∂αp(q) =

{
{1} if p ≡ q,

∅ otherwise.

∂αp(e1 + e2) = ∂αp(e1) ∪ ∂αp(e2)

∂αp(e1e2) =

{
∂αp(e1)e2 ∪ ∂αp(e2) if εα(e1) = true,
∂αp(e1)e2, otherwise.

∂αp(e?) = ∂αp(e)e?

KAT Partial derivatives for words w ∈ (At · Σ)?, inductively by
∂ε(e) = {e}, and ∂wαp(e) = ∂αp(∂w (e)).
The (proven finite) set of all partial derivatives of a KAT term is
the set

∂(At·Σ)?(e) =
⋃

w∈(At·Σ)?

{e ′ | e ′ ∈ ∂w (e)}

An Example

Example
Let B = {b1, b2}, Σ = {p, q}, and e = b1p(b1 + b2)q. The partial
derivative of e with respect to the sequence b1b2pb1b2q is the
following:

∂b1b2pb1b2q
(e) = ∂b1b2pb1b2q

(b1p(b1 + b2)q)

= ∂b1b2q
(∂b1b2p(b1p(b1 + b2)q))

= ∂b1b2q
(∂b1b2p(b1)(p(b1 + b2)q) ∪ ∂b1b2p(p(b1 + b2)q))

= ∂b1b2q
(∂b1b2p(b1)(p(b1 + b2)q)) ∪ ∂b1b2q

(∂b1b2p(p(b1 + b2)q))

= ∂b1b2q
(∂b1b2p(p)(b1 + b2)q)

= ∂b1b2q
((b1 + b2)q)

= ∂b1b2q
(b1 + b2)q ∪ ∂b1b2q

(q)

= ∂b1b2q
(q)

= {1}.

A Procedure for KAT Terms Equivalence

Let e be a KAT term,

e ∼ E(e) ∪

(⋃
αp∈(At·Σ)

αp∂αp(e)

)
.

Therefore, if e1 and e2 are KAT terms, we can reformulate the
equivalence e1 ∼ e2 as

E(e1)∪

(⋃
αp∈(At·Σ)

αp∂αp(e1)

)
∼ E(e2)∪

(⋃
αp∈(At·Σ)

αp∂αp(e2)

)
,

which is tantamount at checking that ∀α ∈ At, εα(e1) = εα(e2)
and ∀αp ∈ (At · Σ), ∂αp(e1) ∼ ∂αp(e2) hold.

A Procedure for KAT Terms Equivalence

We can finitely iterate over the previous equations and reduce the
(in)equivalence of e1 and e2 to one of the next equivalences:

e1 ∼ e2 ↔ ∀α ∈ At,∀w ∈ (At · Σ)?, εα(∂w (e1)) = εα(∂w (e2)) (30)

and
e1 6∼ e2 ↔ (∃w ∃α, εα(∂w (e1)) 6= εα(∂w (e2))). (31)

The procedure equivKAT
Require: S = {({e1}, {e2})}, H = ∅
Ensure: true or false

1: procedure EquivKAT(S , H)
2: while S 6= ∅ do
3: (Γ,∆)← POP(S)
4: for α ∈ At do
5: if εα(Γ) 6= εα(∆) then
6: return false
7: end if
8: end for
9: H ← H ∪ {(Γ,∆)}
10: for αp ∈ (At · Σ) do
11: (Λ,Θ)← ∂αp(Γ,∆)
12: if (Λ,Θ) 6∈ H then
13: S ← S ∪ {(Λ,Θ)}
14: end if
15: end for
16: end while
17: return true
18: end procedure

I lines 4-8 and 10-15 : exponential behavior
I Formally proved terminating and correct
I COQ tactic based on equivKAT

Example
Let B = {b} and let Σ = {p}, are e1 = (pb)?p and e2 = p(bp)? equivalent?
Consider s0 = ({(pb)?p}, {p(bp)?}), it is enough to show that
equivKAT({s0}, ∅) = true.
The first step of the computation generates the two new following pairs of
derivatives:

∂bp(e1, e2) = ({1, b(pb)?}, {(bp)?}),
∂bp(e1, e2) = ({1, b(pb)?}, {(bp)?}).

Then, (e1, e2) is added to the historic set H and the next iteration of equivKAT
considers S = {s1}, with s1 = ({1, b(pb)?}, {(bp)?}), and H = {s0}.

∂bp({1, b(pb)?}, {(bp)?}) = ({b(pb)?}, {(bp)?}),
∂bp({1, b(pb)?}, {(bp)?}) = (∅, ∅).

The next iteration of the procedure will have S = {s2, s3} and H = {s0, s1},
with s2 = ({b(pb)?}, {(bp)?}) and s3 = (∅, ∅).
Since the derivative of s2 is either s2 or s3 and since the same holds for the
derivatives of s3, the procedure will terminate in two iterations with S = ∅ and
H = {s0, s1, s2, s3}. Hence, we conclude that e1 ∼ e2.

Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Program Equivalence

if e1 and e2 are terms encoding the IMP programs C1 and C2, and
if the Boolean test B is encoded by the KAT test t, then we can
encode sequence, conditional instructions and while loops in KAT
as follows.

C1;C2 ,e1e2,

if B then C1 else C2 fi ,(te1 + te2),

while B do C1 end ,(te1)?t.

Example
Let B = {b, c} and Σ = {p, q} be the set of primitive tests and set
of primitive programs, respectively, and let P1 and P2 be the
following two programs:

P1 , whileB do C1; whileB ′ do C2 end end

P2 , ifB then C1; whileB +B ′ do ifB ′ thenC2 elseC1 fi end else skip fi

Let C1 = p, C2 = q, B = b and B ′ = c . The programs P1 and P2
are encoded in KAT as

e1 = (bp((cq)?c))?b and e2 = bp((b + c)(cq + cp))?(b + c) + b,

respectively. The procedure decides the equivalence e1 ∼ e2 in
0.053 seconds.

Program Correctness

This methodology can be extended in order to encode a non trivial
subset of Hoare Logic and allows classical program verification
based on contracts (pre-post condition, invariants).

Table of Contents

Regular Expression (In-)Equivalence

Implementation in Coq

Experimental Results

Deciding Relation Algebra Equations

(In-)Equivalence of KAT terms

Applications

Conclusions and Future Work

Main conclusions and results
I efficient procedure to decide regular expression equivalence ;
I able to solve equations involving relations ;
I a simple extension to decide KAT terms equivalence.
I Application to program verification, but mainly program equivalence
I Extraction to Caml

I Improve the performance of equivKAT in order to handle bigger
(in)-equivalences (on-going work)

I Extension to Schematic Kleene Algebra with test (widening the
actual HL coverage)

I Modal (and concurrent) Kleene Algebra (Equivalence for parallel or
concurrent Programs, timing behavior)

I Embedding into program verification frameworks (why3, etc...)
I Application Runtime Verification (e.g. of Ada/Spark programs)

(ongoing work)

Thank you!

supplementary slides

Finiteness of Partial Derivatives
I Recursive definition of PD via support [Champarnaud and

Ziadi]:
π(∅) = ∅
π(ε) = ∅
π(a) = {1}

π(α + β) = π(α) ∪ π(β)
π(αβ) = π(α)β ∪ π(β)
π(α?) = π(α)α?

I Another way of looking at PD:

PD(α) = {α} ∪ π(α)

I Again, the upper bound of PD:

|π(α)| ≤ |α|Σ

|PD(α)| ≤ |α|Σ + 1

	Regular Expression (In-)Equivalence
	Implementation in Coq
	Experimental Results
	Deciding Relation Algebra Equations
	(In-)Equivalence of KAT terms
	Applications
	Conclusions and Future Work

