
Infinite sets that satisfy the principle of
omniscience in constructive type theory

Mart́ın Hötzel Escardó

University of Birmingham, UK

Tallinn, 25 May 2017



Mathematics in dependent type theory

1. I’ll work in intensional Martin-Löf type theory (MLTT).

2. I will make a number of remarks related to HoTT, in particular
regarding -1-truncation and equivalence.

3. Sometimes I will use function extensionality.

(Alternatively, I can assume that our hypothetical functions are
extensional in a suitable sense, like Bishop did. However, this leads
to the so-called setoid hell.)

4. I will work informally but rigorously.

But I have also written formal versions of the proofs in the computer
in Agda notation.



LPO

For any given p : N→ 2, we can either find n : N with p(n) = 0, or else
determine that p(n) = 1 for all n : N.

Π(p : N→ 2), (Σ(n : N), p(n) = 0) + (Π(n : N), p(n) = 1)

For any given p : N→ 2, we can either find a root of p, or else determine
that there is none.

Π(p : N→ 2), (Σ(n : N), p(n) = 0) + ¬(Σ(n : N), p(n) = 0)



LPO

For any given p : N→ 2, we can either find n : N with p(n) = 0, or else
determine that p(n) = 1 for all n : N.

Π(p : N→ 2), (Σ(n : N), p(n) = 0) + (Π(n : N), p(n) = 1)

For any given p : N→ 2, we can either find a root of p, or else determine
that there is none.

Π(p : N→ 2), (Σ(n : N), p(n) = 0) + ¬(Σ(n : N), p(n) = 0)



Subsingleton version of LPO

Any p : N→ 2 either has a root or it doesn’t.

Π(p : N→ 2), ‖Σ(n : N), p(n) = 0‖+ ¬(Σ(n : N), p(n) = 0)

No need to singleton-truncate the rightmost Σ, as the negation of a type
is automatically a subsingleton.

Also, this truncation is definable in MLTT (by considering the existence
of a minimal root).



The LPO types

Π(p : N→ 2), (Σ(n : N), p(n) = 0) + ¬(Σ(n : N), p(n) = 0)

and

Π(p : N→ 2), ‖Σ(n : N), p(n) = 0‖+ ¬(Σ(n : N), p(n) = 0)

are logically equivalent, but not necessarily isomorphic
(or homotopically equivalent).

The second is a retract of the first.

(This doesn’t use the HoTT formulation of the axiom of choice.)

(It is an instance of choice that just holds.)



The LPO types

Π(p : N→ 2), (Σ(n : N), p(n) = 0) + ¬(Σ(n : N), p(n) = 0)

and

Π(p : N→ 2), ‖Σ(n : N), p(n) = 0‖+ ¬(Σ(n : N), p(n) = 0)

are logically equivalent, but not necessarily isomorphic
(or homotopically equivalent).

The second is a retract of the first.

(This doesn’t use the HoTT formulation of the axiom of choice.)

(It is an instance of choice that just holds.)



LPO is undecided

Π(p : N→ 2), (Σ(n : N), p(n) = 0) + (¬Σ(n : N), p(n) = 0)

1. A meta-theorem is that MLTT doesn’t inhabit LPO or ¬LPO.

2. Each of them is consistent with MLTT.

Classical models validate LPO.

Effective and continuous models validate ¬LPO.

3. LPO is undecided, and we’ll keep it that way.

4. But we’ll say it is a constructive taboo.



We now make N larger by adding a point at infinity

Let N∞ be the type of decreasing binary sequences.

N∞
def
= Σ(α : 2N),Π(n : N), α(n) = 0→ α(n+ 1) = 0.

Side-remark:

1. N is the initial algebra of the functor 1 + (−).

2. N∞ is the final coalgebra of this functor.

(This requires function extensionality.)



We now make N larger by adding a point at infinity

Let N∞ be the type of decreasing binary sequences.

N∞
def
= Σ(α : 2N),Π(n : N), α(n) = 0→ α(n+ 1) = 0.

1. The type N embeds into N∞ by mapping the number n : N to the

sequence n
def
= 1n0ω.

2. A point not in the image of this is ∞ def
= 1ω.

3. The assertion that every point of N∞ is of one of these two forms is
equivalent to LPO.

4. What is true is that no point of N∞ is different from all points of
these two forms.

5. The embedding N + 1→ N∞ is an isomorphism iff LPO holds.

6. But the complement of its image is empty. We say it is dense.



Theorem

Π(p : N∞ → 2), (Σ(x : N∞), p(x) = 0) + ¬Σ(x : N∞), p(n) = 0

1. This is LPO with N replaced by N∞.

2. We don’t use continuity axioms, which anyway are not available in
MLTT.

3. However, this is motivated by topological (not homotopical)
considerations.

In Johnstone’s topological topos, N∞ gets interpreted as the
one-point compactification of discrete N.

Here we are seeing a logical manifestation of topological
compactness.

4. This theorem actually makes sense in any variety of constructive
mathematics (JSL 2013).



WLPO is also undecided by MLTT

Π(p : N→ 2), (Π(n : N), p(n) = 1) + ¬Π(x : N), p(n) = 1

(This implies that every Turing machine carries on for ever or it doesn’t.)

But we have:

Theorem Π(p : N∞ → 2), (Π(n : N), p(n) = 1) + ¬Π(n : N), p(n) = 1

1. The point is that now we quantify over N, although the function p is
defined on N∞.

2. This again holds in any variety of constructive mathematics and
doesn’t rely on continuity axioms (JSL’2013).



Some consequences

1. Every function f : N∞ → N is constant or not.

2. Any two functions f, g : N∞ → N are equal or not.

3. Any function f : N∞ → N has a minimum value, and it is possible
to find the point at which the minimum value is attained.

4. For any function f : N∞ → N there is a point x : N∞ such that if f
has a maximum value, the maximum value is x.

5. Any function f : N∞ → N is not continuous, or not-not continuous.

6. There is a non-continuous function f : N∞ → N iff WLPO holds.



Are there more types like N∞?

1. Plenty.

2. Our business here is how to construct them.



What have we been doing?

Giving examples of types X and properties P of X such that the
assertion

for all x : X, either P (x) or not P (x)

just holds.

1. In classical mathematics, we assume excluded middle.

2. Here we investigate mathematically how much of it just holds.



Two notions

Definition (Omniscient type)
A type X is omniscient if for every p : X → 2, the assertion that we can
find x : X with p(x) = 0 is decidable.

In symbols:

Π(p : X → 2), (Σ(x : X), p(x) = 0) + (¬Σ(x : X), p(x) = 0).

Definition (Searchable type)
A type X is searchable if for every p : X → 2 we can find x0 : X, called
a universal witness for p, such that if p(x0) = 1, then p(x) = 1 for all
x : X.

In symbols,

Π(p : X → 2),Σ(x0 : X), p(x0) = 1→ Π(x : X), p(x) = 1.



Two notions

Definition (Omniscient type)
A type X is omniscient if for every p : X → 2, the assertion that we can
find x : X with p(x) = 0 is decidable.

In symbols:

Π(p : X → 2), (Σ(x : X), p(x) = 0) + (¬Σ(x : X), p(x) = 0).

Definition (Searchable type)
A type X is searchable if for every p : X → 2 we can find x0 : X, called
a universal witness for p, such that if p(x0) = 1, then p(x) = 1 for all
x : X.

In symbols,

Π(p : X → 2),Σ(x0 : X), p(x0) = 1→ Π(x : X), p(x) = 1.



Their relationship

omniscient(X)
def
= Π(p : X → 2), (Σ(x : X), p(x) = 0) + (¬Σ(x : X), p(x) = 0).

searchable(X)
def
= Π(p : X → 2),Σ(x0 : X), p(x0) = 1→ Π(x : X), p(x) = 1.

NB. These types are not subsingletons in general.

Proposition A type X is searchable iff it has a point and is omniscient:

searchable(X) ⇐⇒ X × omniscient(X).

A few theorems rely on pointedness, using the notion of searchability.



Closure under Σ

If X is omniscient/searchable and Y is an X-indexed family of
omniscient/searchable types, then so is its disjoint sum Σ(x : X), Y (x).



Closure under Π

Not to be expected in general.

E.g. N∞ and 2 are omniscient, but in continuous and effective models of
type theory, the function space N∞ → 2 is not.

In the topological topos, N∞ → 2 is a countable discrete space.



Closure under finite products

Theorem A product of searchable types indexed by a finite type is
searchable.



Brouwerian closure under countable products

Theorem Brouwerian intuitionistic axioms =⇒
A countable product of searchable types is searchable.

This is a kind of Tychonoff theorem, if we think of searchability as a
“synthetic” notion of compactness.

In particular, the Cantor type 2N, which is interpreted as the Cantor
space in the topological topos, is searchable.

1. Falsified in one effective model
(the effective topos, which is realizability over Kleene’s K1).

2. But validated in another effective model
(realizability over Kleene’s K2),
and in the topological topos.

(I implemented this in Agda, by disabling the termination checker in
a particular function. One can run interesting examples.)



Brouwerian closure under countable products

Theorem Brouwerian intuitionistic axioms =⇒
A countable product of searchable types is searchable.

This is a kind of Tychonoff theorem, if we think of searchability as a
“synthetic” notion of compactness.

In particular, the Cantor type 2N, which is interpreted as the Cantor
space in the topological topos, is searchable.

1. Falsified in one effective model
(the effective topos, which is realizability over Kleene’s K1).

2. But validated in another effective model
(realizability over Kleene’s K2),
and in the topological topos.

(I implemented this in Agda, by disabling the termination checker in
a particular function. One can run interesting examples.)



Brouwerian closure under countable products

Theorem Brouwerian intuitionistic axioms =⇒
A countable product of searchable types is searchable.

This is a kind of Tychonoff theorem, if we think of searchability as a
“synthetic” notion of compactness.

In particular, the Cantor type 2N, which is interpreted as the Cantor
space in the topological topos, is searchable.

1. Falsified in one effective model
(the effective topos, which is realizability over Kleene’s K1).

2. But validated in another effective model
(realizability over Kleene’s K2),
and in the topological topos.

(I implemented this in Agda, by disabling the termination checker in
a particular function. One can run interesting examples.)



We will need this form of closure under Π

Theorem (micro Tychonoff)
A product of searchable types indexed by a subsingleton type is itself
searchable.

That is, if X is a subsingleton, and Y is an X-indexed family of
searchable types, then the type Π(x : X), Y (x) is searchable.

This cannot be proved if searchability is replaced by omniscience (that is,
if we don’t assume that every Y (x) is pointed).

This is easy with excluded middle, but we are not assuming it.



We will need this form of closure under Π

Theorem (micro Tychonoff)
A product of searchable types indexed by a subsingleton type is itself
searchable.

That is, if X is a subsingleton, and Y is an X-indexed family of
searchable types, then the type Π(x : X), Y (x) is searchable.

This cannot be proved if searchability is replaced by omniscience (that is,
if we don’t assume that every Y (x) is pointed).

This is easy with excluded middle, but we are not assuming it.



Theorem A subsingleton-indexed product of searchable types is searchable.

1. Let X subsingleton, Y (x) searchable for every x : X.

2. Z
def
= Π(x : X), Y (x).

We have Π(x : X), (Z ' Y (x)) and (X → 0)→ (Z ' 1).

3. Let p : Z → 2.

4. Construct z0(x)
def
= . . . in Z using the first equivalence.

5. X → p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), X → p(z) = 1.

p(z0) = 1→ Π(z : Z), p(z) = 0→ (X → 0).

6. (X → 0)→ p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), (X → 0)→ p(z) = 1.

7. By transitivity of →, we get

p(z0) = 1→ Π(z : Z), p(z) = 0→ p(z) = 1, so

p(z0) = 1→ Π(z : Z), p(z) = 1. Q.E.D.



Theorem A subsingleton-indexed product of searchable types is searchable.

1. Let X subsingleton, Y (x) searchable for every x : X.

2. Z
def
= Π(x : X), Y (x).

We have Π(x : X), (Z ' Y (x)) and (X → 0)→ (Z ' 1).

3. Let p : Z → 2.

4. Construct z0(x)
def
= . . . in Z using the first equivalence.

5. X → p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), X → p(z) = 1.

p(z0) = 1→ Π(z : Z), p(z) = 0→ (X → 0).

6. (X → 0)→ p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), (X → 0)→ p(z) = 1.

7. By transitivity of →, we get

p(z0) = 1→ Π(z : Z), p(z) = 0→ p(z) = 1, so

p(z0) = 1→ Π(z : Z), p(z) = 1. Q.E.D.



Theorem A subsingleton-indexed product of searchable types is searchable.

1. Let X subsingleton, Y (x) searchable for every x : X.

2. Z
def
= Π(x : X), Y (x).

We have Π(x : X), (Z ' Y (x)) and (X → 0)→ (Z ' 1).

3. Let p : Z → 2.

4. Construct z0(x)
def
= . . . in Z using the first equivalence.

5. X → p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), X → p(z) = 1.

p(z0) = 1→ Π(z : Z), p(z) = 0→ (X → 0).

6. (X → 0)→ p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), (X → 0)→ p(z) = 1.

7. By transitivity of →, we get

p(z0) = 1→ Π(z : Z), p(z) = 0→ p(z) = 1, so

p(z0) = 1→ Π(z : Z), p(z) = 1. Q.E.D.



Theorem A subsingleton-indexed product of searchable types is searchable.

1. Let X subsingleton, Y (x) searchable for every x : X.

2. Z
def
= Π(x : X), Y (x).

We have Π(x : X), (Z ' Y (x)) and (X → 0)→ (Z ' 1).

3. Let p : Z → 2.

4. Construct z0(x)
def
= . . . in Z using the first equivalence.

5. X → p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), X → p(z) = 1.

p(z0) = 1→ Π(z : Z), p(z) = 0→ (X → 0).

6. (X → 0)→ p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), (X → 0)→ p(z) = 1.

7. By transitivity of →, we get

p(z0) = 1→ Π(z : Z), p(z) = 0→ p(z) = 1, so

p(z0) = 1→ Π(z : Z), p(z) = 1. Q.E.D.



Theorem A subsingleton-indexed product of searchable types is searchable.

1. Let X subsingleton, Y (x) searchable for every x : X.

2. Z
def
= Π(x : X), Y (x).

We have Π(x : X), (Z ' Y (x)) and (X → 0)→ (Z ' 1).

3. Let p : Z → 2.

4. Construct z0(x)
def
= . . . in Z using the first equivalence.

5. X → p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), X → p(z) = 1.

p(z0) = 1→ Π(z : Z), p(z) = 0→ (X → 0).

6. (X → 0)→ p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), (X → 0)→ p(z) = 1.

7. By transitivity of →, we get

p(z0) = 1→ Π(z : Z), p(z) = 0→ p(z) = 1, so

p(z0) = 1→ Π(z : Z), p(z) = 1. Q.E.D.



Theorem A subsingleton-indexed product of searchable types is searchable.

1. Let X subsingleton, Y (x) searchable for every x : X.

2. Z
def
= Π(x : X), Y (x).

We have Π(x : X), (Z ' Y (x)) and (X → 0)→ (Z ' 1).

3. Let p : Z → 2.

4. Construct z0(x)
def
= . . . in Z using the first equivalence.

5. X → p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), X → p(z) = 1.

p(z0) = 1→ Π(z : Z), p(z) = 0→ (X → 0).

6. (X → 0)→ p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), (X → 0)→ p(z) = 1.

7. By transitivity of →, we get

p(z0) = 1→ Π(z : Z), p(z) = 0→ p(z) = 1, so

p(z0) = 1→ Π(z : Z), p(z) = 1. Q.E.D.



Theorem A subsingleton-indexed product of searchable types is searchable.

1. Let X subsingleton, Y (x) searchable for every x : X.

2. Z
def
= Π(x : X), Y (x).

We have Π(x : X), (Z ' Y (x)) and (X → 0)→ (Z ' 1).

3. Let p : Z → 2.

4. Construct z0(x)
def
= . . . in Z using the first equivalence.

5. X → p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), X → p(z) = 1.

p(z0) = 1→ Π(z : Z), p(z) = 0→ (X → 0).

6. (X → 0)→ p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), (X → 0)→ p(z) = 1.

7. By transitivity of →, we get

p(z0) = 1→ Π(z : Z), p(z) = 0→ p(z) = 1, so

p(z0) = 1→ Π(z : Z), p(z) = 1. Q.E.D.



Theorem A subsingleton-indexed product of searchable types is searchable.

1. Let X subsingleton, Y (x) searchable for every x : X.

2. Z
def
= Π(x : X), Y (x).

We have Π(x : X), (Z ' Y (x)) and (X → 0)→ (Z ' 1).

3. Let p : Z → 2.

4. Construct z0(x)
def
= . . . in Z using the first equivalence.

5. X → p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), X → p(z) = 1.

p(z0) = 1→ Π(z : Z), p(z) = 0→ (X → 0).

6. (X → 0)→ p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), (X → 0)→ p(z) = 1.

7. By transitivity of →, we get

p(z0) = 1→ Π(z : Z), p(z) = 0→ p(z) = 1, so

p(z0) = 1→ Π(z : Z), p(z) = 1. Q.E.D.



Theorem A subsingleton-indexed product of searchable types is searchable.

1. Let X subsingleton, Y (x) searchable for every x : X.

2. Z
def
= Π(x : X), Y (x).

We have Π(x : X), (Z ' Y (x)) and (X → 0)→ (Z ' 1).

3. Let p : Z → 2.

4. Construct z0(x)
def
= . . . in Z using the first equivalence.

5. X → p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), X → p(z) = 1.

p(z0) = 1→ Π(z : Z), p(z) = 0→ (X → 0).

6. (X → 0)→ p(z0) = 1→ Π(z : Z), p(z) = 1.

p(z0) = 1→ Π(z : Z), (X → 0)→ p(z) = 1.

7. By transitivity of →, we get

p(z0) = 1→ Π(z : Z), p(z) = 0→ p(z) = 1, so

p(z0) = 1→ Π(z : Z), p(z) = 1. Q.E.D.



Amusing consequence, tangential to our development

Consider the subsingleton version of LPO discussed above.

Corollary. The type NLPO is searchable.

I The reason is that LPO implies that N is searchable, and so this is a
product of searchable types.

Even though the searchability of N is undecided!

I If LPO holds, the type of the corollary is N.

I If LPO fails, it is the contractible type 1.

I As LPO is undecided, we don’t know what the type NLPO “really is”.

I Whatever it is, however, it is always searchable.



Disjoint sum with a point at infinity

Theorem
The disjoint sum of a countable family of searchable sets with a point at
infinity is searchable.

We need to say how we add a point at infinity.

The type 1 + Σ(n : N), X(n) won’t do, of course.

We will do this in a couple of steps.



Injectivity of the universe of types

Theorem
For any embedding e : A→ B, every X : A→ U extends to some
Y : B → U along e, up to equivalence,

Π(a : A), (Y (e(a)) ' X(a)).

A map e : A→ B is called an embedding iff its fibers e−1(b),

Σ(a : A), f(a) = b,

are all subsingletons.



Injectivity of the universe of types
Theorem
For any embedding e : A→ B, every X : A→ U extends to some
Y : B → U along e, up to equivalence.

Two constructions:

1. We have the “maximal” extension Y = X/e.

(X/e)(b) = Π
(
s : e−1(b)

)
, X(pr1 s)

' Π(a : A), e(a) = b → X(a).

2. And also the “minimal” extension Y = X \ e.

(X \ e)(b) = Σ
(
s : e−1(b)

)
, X(pr1 s)

' Σ(a : A), e(a) = b × X(a).

The first one works our purposes.



Injectivity of the universe of types
Theorem
For any embedding e : A→ B, every X : A→ U extends to some
Y : B → U along e, up to equivalence.

Two constructions:

1. We have the “maximal” extension Y = X/e.

(X/e)(b) = Π
(
s : e−1(b)

)
, X(pr1 s)

' Π(a : A), e(a) = b → X(a).

2. And also the “minimal” extension Y = X \ e.

(X \ e)(b) = Σ
(
s : e−1(b)

)
, X(pr1 s)

' Σ(a : A), e(a) = b × X(a).

The first one works our purposes.



Injectivity of the universe of types

Let e : A→ B be an embedding and X : A→ U .

Consider the extended type family X/e : B → U defined above:

(X \ e)(b) = Π
(
s : e−1(b)

)
, X(pr1 s)

We have

1. For all b : B not in the image of the embedding,

(X/e)(b) ' 1.

2. If for all a : A, the type X(a) is searchable too, then for all b : B the
type (X/e)(b) is searchable, by micro-Tychonoff.

3. Hence if additionally B is searchable, the type Σ(b : B), (X/e)(b) is
searchable too.

4. We are interested in A = N and B = N∞, which gives the disjoint
sum of X(a) with a point at infinity.



A map L : (N→ U)→ U

Let e : N→ N∞ be the natural embedding.

Given X : N→ U , first take X/e : N∞ → U

This step adds a point at infinity to the sequence.

We then sum over N∞, to get L(X):

L(X) = Σ(u : N∞), (X/e)(u).

Then L maps any sequence of searchable types to a searchable type.



Iterating this map L : (N→ U)→ U

We get (very large!) searchable ordinals, with the property that any
inhabited decidable subset has a least element.

They are all countable.

Or rather they each have a countable subset with empty complement.

An ordinal is a type X with a transitive, extensional, accessible relation
(−) < (−) : X → X → U .

1. Extensional means that any two elements with the same
predecessors are equal.

2. The accessibility of points of X is inductively defined.

We say that x : X is accessible whenever every y < x is accessible.

The accessibility of a point is a subingleton.

3. < is accessible if every x : X is accessible.

The accessibility of < implies that it is subsingleton valued, and that
X is set.



Iterating this map L : (N→ U)→ U

We get (very large!) searchable ordinals, with the property that any
inhabited decidable subset has a least element.

They are all countable.

Or rather they each have a countable subset with empty complement.

An ordinal is a type X with a transitive, extensional, accessible relation
(−) < (−) : X → X → U .

1. Extensional means that any two elements with the same
predecessors are equal.

2. The accessibility of points of X is inductively defined.

We say that x : X is accessible whenever every y < x is accessible.

The accessibility of a point is a subingleton.

3. < is accessible if every x : X is accessible.

The accessibility of < implies that it is subsingleton valued, and that
X is set.



Iterating this map L : (N→ U)→ U

We get (very large!) searchable ordinals, with the property that any
inhabited decidable subset has a least element.

They are all countable.

Or rather they each have a countable subset with empty complement.

An ordinal is a type X with a transitive, extensional, accessible relation
(−) < (−) : X → X → U .

1. Extensional means that any two elements with the same
predecessors are equal.

2. The accessibility of points of X is inductively defined.

We say that x : X is accessible whenever every y < x is accessible.

The accessibility of a point is a subingleton.

3. < is accessible if every x : X is accessible.

The accessibility of < implies that it is subsingleton valued, and that
X is set.



Iterating this map L : (N→ U)→ U

We get (very large!) searchable ordinals, with the property that any
inhabited decidable subset has a least element.

They are all countable.

Or rather they each have a countable subset with empty complement.

An ordinal is a type X with a transitive, extensional, accessible relation
(−) < (−) : X → X → U .

1. Extensional means that any two elements with the same
predecessors are equal.

2. The accessibility of points of X is inductively defined.

We say that x : X is accessible whenever every y < x is accessible.

The accessibility of a point is a subingleton.

3. < is accessible if every x : X is accessible.

The accessibility of < implies that it is subsingleton valued, and that
X is set.



The delay monad

Define F (X) = L(λn.X), which is equivalent to
Σ(u : N∞),Π(n : N), Xe(n)=u.

An equivalent coninductive definition of F is given by constructors

now : X → F (X),

later : F (X)→ F (X).

1. The Cantor type 2N is the carrier of a final coalgebra of F .

2. There is an initial algebra, whose carrier is the subset of Cantor
consisting of the sequences with finitely many zeros, for a suitable
notion of finiteness.

(Which is classically equivalent to the classical one.)



For the sake of completeness, we characterize the
injectives in UF

We have seen that universes are injective, and applied this to construct
searchable types and ordinals.

Independently of this, it is natural to try to grasp the injective types.

1. In topos theory, the injectives are the retracts powers of the
subobject classifier.

2. We show that, in UF, they are the retracts of powers of universes.

3. Before concluding, we prove this and offer a finer analysis.



The Yoneda embedding

1. For any type X, point x : X and family A : X → U ,

(Π(y : X). Id x y → A(y)) ' A(x).

This is the Yoneda Lemma.

2. Say that A is representable if we have x : X with A(y) ' Id x y.

3. A having a universal element amounts to Σ(x : X).A(x) being
contractible.

4. The representability of A is equivalent to the contractibility of
Σ(x : X).A(x), and hence representability is a proposition.

Therefore, assuming univalence,

Theorem. The map Id : X → UX is an embedding.



Standard reasoning with injectives

1. Any power IX of an injective type I is again injective.

This argument needs that if A→ B is an embedding then so is its
product A×X → B ×X with the identity map.

2. A retract of an injective type is again injective.

3. An injective type is a retract of every type in which it is embedded.



Characterization of the injective types

Combining this with the Yoneda Embedding:

Theorem. The injective types are precisely the retracts of powers of the
universes.

We also have:

Theorem. The injective sets are precisely the retracts of powers of the
universe of propositions.

Theorem. The injective n+ 1-types are precisely the retracts of powers
of the universe of n-types.



End


