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Abstract nonsense Practical programming

Wewant our reasoning principles to be:

• equational: proofs are by chains of equalities
between programs

• expressive: leveraging high-level properties of
particular constructs
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freemonads
A type of trees with nodes shaped by the functor f

and leaves given by variables of the type a.

data Free f a

= Var a

| Op (f (Free f a))

Monadic bind given by substitution in leaves.
Sometimes denoted F∗.



the problem
• Inductive data types (initial algebra) comewith a low-level

resoning principle (structural induction).

• However, structural induction can be a bit awkward.

Consider the freemonad transformer:
newtype FreeT f m a = FreeT (m (Free (f . m) a)

Would you like to prove themonad laws using structural
induction by hand?
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(From an unpublished appendix toM.Piróg & J.Gibbons.Monads for behaviour. MFPS 2013)



the problem
• Let’s invent more abstract reasoning principles that

respect the underlying structure!



string diagrams
• A 2-dimensional notation for expressions

• Useful for presentation of more complicated expressions
that involve a number of functors

• Some administrative equalities are built-in



lookup
Consider the function

lookup k :: ∀a.List (Key, a)→ Maybe a

It is polymorphic in a. So, alternatively, wewrite
lookup k : List ◦ (Key, -)→Maybe
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composition
lookup k . concat . fmap reverse

:: ∀a.List (List (Key, a))→ Maybe a

lookup k

concat

reverse

List
List

(Key, -)

Maybe



freemonads, more abstractly
This definition is only one of many possible implementations:

data Free f a

= Var a

| Op (f (Free f a))

Shouldn’t this be an interface?
class FreeMonad f a where ???

What are the operations and laws that characterise free
monads?



freeness, mathematically
emb :: ∀a.f a → Free f a

emb : F → F∗

F

F∗

Generic operation that takes a single operation to a term.



freeness, mathematically
interp :: (Functor f, Monad m) ⇒

(∀x.f x -> m x) -> Free f a → m a

Given amonadM and f : F → M,
there is amonadmorphism

bfc : F∗ → M

F∗

M

F

M
f



cancellation
interp f . emb = f

bfc · emb = f

F

M

F∗

F

f
=

F

M

f

Interpreting a term that consists of one operation is the same
as interpreting that operation.



reflection
interp emb = id

bembc = id
F∗

F∗

F =
F∗

F∗

Interpreting operations as syntax... preserves syntax.



fusion
m . interp f = interp (m . f)

m · bfc = bm · fc, wherem is a monadmorphism

f

m

F∗

T

F

M =
f
m

F∗

T

F

M

Interpreting a term and then transforming semantics is the same as
interpreting and transforming the term in one go.



example: renaming is functorial
Given functors F andG, and a natural transformation f : F → G,

we can define a natural transformation (hoist)
F∗ → G∗

as follows:
bemb · fc
F∗

G∗

F

G f



Given three functors F,G,H, and two natural transformations
f : F → G and g : G→ H, is the composition of hoists a hoist of

composition? That is:
bemb · gc · bemb · fc = bemb · g · fc
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G

H
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going back to FreeT
Sadly, what we have seen is not enough to show that

FreeT is a monad.
Luckily, freemonads in Haskell have other kinds of similar

properties.



distributable freemonads
Given

f : F ◦ G→ G ◦ F
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cancellation
〈f〉 · emb = Gemb · f

F G
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fF

F∗

F

=

F G
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reflection

〈id〉 = id

F∗

F∗

F =

F∗

F∗



fusion
J〈f′〉 · 〈f〉K = 〈Jf′ · fK〉

F∗ J K

J K F∗

f

f′

F

F

F

F

=

F∗ J K

J K F∗

f
f′

F

G

F



uniformity
fF∗ · 〈g · F∗f〉 = 〈fF · g〉 · F∗f

F∗ J

F∗K

g

f

f

KF

FJ
=

F∗ J

F∗K

g

f

f

KF

FJ



uniformity

Kind of

(fg)∗f = f(gf)∗

in Kleene algebra



(From an unpublished appendix toM.Piróg & J.Gibbons.Monads for behaviour. MFPS 2013)
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more in the ICFP 2016 paper
• onemore universal property (generalised fold)

• relationship between different universal properties
• a lot of further examples and an equational proof of

a real-life theorem
• explanation where all these properties come from


