String Diagrams for Free Monads

Maciej Piróg, University of Wrocław, Poland (joint work with Nicolas Wu, University of Bristol, UK)

Institute of Cybernetics
Tallinn, 8 Dec 2016

Abstract nonsense

Practical programming

Abstract nonsense
Practical programming

We want our reasoning principles to be:

- equational: proofs are by chains of equalities between programs
- expressive: leveraging high-level properties of particular constructs

free monads

A type of trees with nodes shaped by the functor f and leaves given by variables of the type a.

$$
\begin{aligned}
& \text { data Free f a } \\
& \quad=\operatorname{Var} \text { a } \\
& \text { । Op (f (Free fa)) }
\end{aligned}
$$

Monadic bind given by substitution in leaves.
Sometimes denoted F^{*}.

the problem

- Inductive data types (initial algebra) come with a low-level resoning principle (structural induction).
- However, structural induction can be a bit awkward.

the problem

- Inductive data types (initial algebra) come with a low-level resoning principle (structural induction).
- However, structural induction can be a bit awkward.

Consider the free monad transformer:
newtype FreeT f m a $=$ FreeT (m (Free (f . m) a)
Would you like to prove the monad laws using structural induction by hand?

Below, we prove that $m \cdot \mu_{K}^{K}=M\left(\right.$ id $\left.+\Sigma \mu_{K}^{K}\right) \cdot w$ and $m \cdot K \mu^{K}=M\left(\right.$ id $\left.+\Sigma K \mu^{K}\right) \cdot w$, which means that both μ_{K}^{K} and $K \mu^{K}$ are coalgebra homomorphisms $\mu_{K}^{K}, K \mu^{K}$: $\left\langle K^{3}, w\right\rangle \rightarrow\left\langle K^{2}, m\right\rangle$. By uniqueness, $\left.\left.\mu^{K} \cdot \mu_{K}^{K}=\llbracket m\right\rfloor \cdot \mu_{K}^{K}=\llbracket w\right\rfloor=\lceil m\rfloor \cdot K \mu^{K}=$ $\mu^{K} \cdot K \mu^{K}$. Diagrammatically:

$m \cdot \mu_{K}^{K}$

$=\left\{\right.$ definition of m, universal property of $\left.\mu^{K}\right\}$
$M\left(\right.$ id $\left.+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id}+\Sigma r_{K}^{K}+\mathrm{id}_{\Sigma K^{2}}\right) \cdot$ flat $_{\mathrm{ld}+\Sigma K: \Sigma K^{2}}$ $\cdot M\left(a+i d_{\Sigma K^{2}}\right) \cdot a_{K} \cdot \alpha_{K}^{-1} \cdot M\left(i d_{K}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id}_{K}+\mathrm{id} \mathrm{\Sigma K}^{2}+\Sigma \mu_{K}^{K}\right)$ - flat ${ }_{K+\Sigma K^{2} \Sigma K^{a}} \cdot M\left(\alpha_{K}+\mathrm{id}_{\Sigma K^{2}}\right) \cdot \alpha_{K^{2}}$
$=\left\{\right.$ camellation of a_{K} and α_{K}^{-1}, and naturality $\left.o f a\right\}$
$M\left(\mathrm{id}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id}+\Sigma \eta_{K}^{K}+\mathrm{id}_{\Sigma K^{2}}\right) \cdot \mathrm{flat}_{14+\Sigma K . \Sigma K^{2}}$
$\cdot M\left(\mathrm{id}_{M(1 \mathrm{~d}+\Sigma K)}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id}_{M(\mathrm{~m}+\Sigma K)}+\mathrm{id}_{\Sigma K^{2}}+\Sigma \mu_{K}^{K}\right)$
$\cdot M\left(\alpha+i d_{\Sigma K^{2}}+\Sigma K^{2}\right) \cdot$ flat $t_{K+\Sigma K^{2}} \Sigma K^{2} \cdot M\left(\alpha_{K}+i d_{\Sigma K^{2}}\right) \cdot \alpha_{K^{2}}$
$=\{$ naturality of flat $\}$
$M\left(\mathrm{id}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id}+\Sigma \eta_{K}+\mathrm{id}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{idnd}+\Sigma K+\mathrm{gr}_{\Sigma K^{2}}\right)$ $\cdot M\left(\mathrm{id}_{\mathrm{d}+\Sigma K}+\mathrm{id}_{\Sigma K^{2}}+\Sigma \mu_{K}^{K}\right) \cdot \mathrm{flat}_{\mathrm{md}+\Sigma K} \Sigma K^{2}+\Sigma K^{3}$
$\cdot M\left(\alpha+i d_{\Sigma K^{2}+\Sigma K^{2}}\right)+f l a t_{K+\Sigma K^{2}} \sum K^{2} \cdot M\left(\alpha_{K}+i d_{\Sigma K^{2}}\right) \cdot \alpha_{K^{2}}$
$=\{$ distributivity of composition over coporduct $\}$
$M\left(\mathrm{id}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id} \mathrm{d}_{\mathrm{d}+\Sigma K^{2}}+\mathrm{g} r_{\Sigma K^{2}}\right)$
$\cdot M\left(i d_{d}+\Sigma \eta_{K}^{K}+i d_{\Sigma K^{2}}+\Sigma \mu_{K}^{K}\right) \cdot$ flat $_{\mathrm{ld}+\Sigma K \Sigma K^{2}}+\Sigma K^{2}$
$\cdot M\left(a+i d_{\Sigma K^{2}}+\Sigma K^{2}\right) \cdot$ flat $_{K+\Sigma K^{2}} \sum_{K^{2}} \cdot M\left(a_{K}+\mathrm{id} \mathrm{I}^{2}\right) \cdot \alpha_{K^{2}}$
$=\{$ naturality of gr , right unit for $K\}$
$M\left(\mathrm{id}+\Sigma \mu_{K}^{K}\right) \cdot M\left(\mathrm{id}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id} \mathrm{dd}_{\mathrm{K}}+\Sigma K^{3}+g \Sigma_{\Sigma K^{3}}\right)$

$\cdot M\left(\alpha+i d_{\Sigma K^{2}+\Sigma K^{2}}\right) \cdot$ flat $_{K+\Sigma K^{2}} \Sigma K^{2} \cdot M\left(\alpha_{K}+i d_{\Sigma K^{2}}\right) \cdot \alpha_{K^{2}}$
$=\{$ definition of $w\}$
$M\left(\mathrm{id}+\Sigma \mu_{K}^{K}\right) \cdot w$
$m \cdot K \mu^{K}$
$=\{$ definition of $m\}$
$M\left(\mathrm{id}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id}+\Sigma \eta_{K}^{K}+\mathrm{id} \Sigma K^{2}\right) \cdot$ flat $_{\mathrm{Ld}+\Sigma K} \mathrm{\Sigma N}^{2}$ $\cdot M\left(a+i d_{2 K^{2}}\right) \cdot a_{K} \cdot K \mu^{K}$
$=\{$ naturality of $\alpha\}$
$M\left(\mathrm{id}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id}+\Sigma \eta_{K}^{K}+\mathrm{id}_{\Sigma K^{2}}\right) \cdot$ flat $_{\mathrm{md}+\Sigma K, \Sigma K^{2}}$ $\cdot M\left(a+i d_{\Sigma K^{2}}\right) \cdot M\left(\mu^{K}+\Sigma K^{\prime} \mu^{K}\right) \cdot a_{K^{2}}$

```
= {properties of coproducts }
    M(id+ gr mKa
        -M(\alpha+id
= {universal propenty of }\mp@subsup{\mu}{}{K}
    M(id + gr EKN2
```



```
    -M(M((id + gr \SigmaK})+\mp@subsup{\textrm{id}}{\Sigma\mp@subsup{K}{}{3}}{})\cdotM(M(\textrm{id}+\mp@subsup{\textrm{id}}{\SigmaK}{}+\Sigma\mp@subsup{\mu}{}{K})+i\mp@subsup{\textrm{id}}{\Sigma\mp@subsup{K}{}{3}}{}
    -M(flat ta+\Sigma\mp@subsup{K}{}{2}\Sigma\mp@subsup{K}{}{2}}+\mp@subsup{\textrm{id}}{\Sigma\mp@subsup{K}{}{2}}{})\cdotM(M(\alpha+i\mp@subsup{d}{\Sigma\mp@subsup{K}{}{2}}{})+i\mp@subsup{\textrm{i}}{\Sigma\mp@subsup{K}{}{2}}{}
    - M(aK}+\mp@subsup{\textrm{id}}{\mp@subsup{\textrm{EN}}{}{2}}{2})\cdot\mp@subsup{\alpha}{\mp@subsup{K}{}{2}}{
= {cancellation of }\alpha\mathrm{ and }\mp@subsup{\alpha}{}{-1}
    M(id + gr \SigmaK2 )
    - M(iddM(|d+\SigmaK)}+\SigmaK\mp@subsup{\mu}{}{K}
    . M(M(id+ gr\SigmaK})+\textrm{id
    -M(flat m+\Sigma\mp@subsup{K}{}{2}\Sigma\mp@subsup{K}{}{2}}+\mp@subsup{\textrm{id}}{\Sigma\mp@subsup{K}{}{3}}{})\cdotM(M(\alpha+i\mp@subsup{d}{\SigmaK}{
    - M(aK}+i\mp@subsup{|}{\sumK}{2})\cdot\mp@subsup{a}{\mp@subsup{K}{}{2}}{
= {naturality of flat }
MI(id + gr \Sigma\Sigma\mp@subsup{K}{}{2}
    -M(id + gr mK + id\SigmaK\mp@subsup{K}{}{a}})\cdotM(\textrm{id}+\textrm{id}\SigmaK+\Sigma\mp@subsup{\mu}{}{K}+\textrm{id}⿰\mp@subsup{\Sigma}{\mp@subsup{K}{}{a}}{}
    - fiat maEK\mp@subsup{K}{}{2}+\Sigma\mp@subsup{K}{}{2}\Sigma\Sigma\mp@subsup{K}{}{2}
    -M(M(a+id
= {monad laws }
    M(id+ gr \SigmaN\mp@subsup{N}{}{2}
        . M(id + gr \SigmaK +id \SigmaK )}\cdotM(id+id\mp@subsup{d}{\SigmaK}{}+\Sigma\mp@subsup{\sum}{\mu}{K}+\textrm{i
        .flat 
        - flat 
= { naturality of gr }
    M(id + gr mK2
        -M(id}+\Sigma\eta\mp@subsup{\eta}{K}{K}+\Sigma\mp@subsup{\eta}{K}{K}+i\mp@subsup{\textrm{i}}{\Sigma\Sigma\mp@subsup{K}{}{2}}{})\cdotM(id|+\SigmaK+\SigmaK
        -M(id+id
        \cdotM(a+id
= {properties of coproducts }
    M(id + gr \SigmaK',
```



```
    { naturality of 咲}
    M(id + gr EK\mp@subsup{K}{}{2}
```



```
    * M(a+id
    = {right unit for }K\mathrm{ , naturality of }\textrm{g}
```



```
    -M(id +\Sigma \Sigma(\eta\mp@subsup{K}{}{\prime}}\cdot\mp@subsup{\eta}{K}{K})+\Sigma\mp@subsup{\eta}{\mp@subsup{K}{}{2}}{N}+\textrm{id
    * M(\alpha+id\Sigma\mp@subsup{K}{}{2}}+\textrm{id
= {definition of w}
    M(id+\Sigma\SigmaK}\mp@subsup{\mu}{}{K})\cdot

\section*{the problem}
- Let's invent more abstract reasoning principles that respect the underlying structure!

\section*{string diagrams}
- A 2-dimensional notation for expressions
- Useful for presentation of more complicated expressions that involve a number of functors
- Some administrative equalities are built-in

\section*{lookup}

\section*{Consider the function}
\[
\text { lookup k :: } \forall \text { a.List (Key, a) } \rightarrow \text { Maybe a }
\]

It is polymorphic in a. So, alternatively, we write lookup k : List \(\circ(\) Key, - ) \(\rightarrow\) Maybe

\section*{lookup}

\section*{Consider the function}
\[
\text { lookup k :: } \forall \text { a.List (Key, a) } \rightarrow \text { Maybe a }
\]

It is polymorphic in a. So, alternatively, we write lookupk : List \(\circ(\) Key, - ) \(\rightarrow\) Maybe


\section*{composition}


Maybe

\section*{composition}


\section*{composition}

(Key, -)

Maybe

\section*{composition}


\section*{composition}


\section*{composition}


\section*{composition}


Maybe

\section*{composition}


\section*{composition}
lookup k . concat : : \(\forall\) a.List (List (Key, a)) \(\rightarrow\) Maybe a


\section*{composition}
lookup k . concat . fmap reverse
\(:: \forall\).List (List (Key, a)) \(\rightarrow\) Maybe a


\section*{free monads, more abstractly}

This definition is only one of many possible implementations:
\[
\begin{aligned}
& \text { data Free f a } \\
& =\operatorname{Var} a \\
& \quad \mid \text { Op }(f \quad(\text { Free } f a))
\end{aligned}
\]

Shouldn't this be an interface?
class FreeMonad f a where ???

What are the operations and laws that characterise free monads?

\section*{freeness, mathematically}
\[
\mathrm{emb}:: \quad \forall \mathrm{a} . \mathrm{f} a \rightarrow \text { Free } \mathrm{f} \text { a }
\]
\[
\text { emb }: F \rightarrow F^{*}
\]


Generic operation that takes a single operation to a term.

\section*{freeness, mathematically}
\[
\begin{aligned}
& \text { interp : : (Functor f, Monad m) } \Rightarrow \\
& \quad(\forall \mathrm{x} . \mathrm{f} \mathrm{x} \rightarrow \mathrm{~m} x)->\text { Free } \mathrm{f} a \rightarrow \mathrm{~m} a
\end{aligned}
\]

Given a monad \(M\) and \(f: F \rightarrow M\), there is a monad morphism
\[
\lfloor f\rfloor: F^{*} \rightarrow M
\]


\section*{cancellation}
\[
\text { interp } f . e m b=f
\]
\[
\lfloor f\rfloor \cdot \mathrm{emb}=f
\]


Interpreting a term that consists of one operation is the same as interpreting that operation.

\section*{reflection}
interp emb = id
\[
\lfloor\mathrm{emb}\rfloor=\mathrm{id}
\]


Interpreting operations as syntax... preserves syntax.

\section*{fusion}
\[
m \text {. interp } f=\operatorname{interp}(m . f)
\]
\(m \cdot\lfloor f\rfloor=\lfloor m \cdot f\rfloor\), where \(m\) is a monad morphism


Interpreting a term and then transforming semantics is the same as interpreting and transforming the term in one go.

\section*{example: renaming is functorial}

Given functors \(F\) and \(G\), and a natural transformation \(f: F \rightarrow G\), we can define a natural transformation (hoist)
\[
F^{*} \rightarrow G^{*}
\]
as follows:
\[
\lfloor\mathrm{emb} \cdot f\rfloor
\]


Given three functors \(F, G, H\), and two natural transformations \(f: F \rightarrow G\) and \(g: G \rightarrow H\), is the composition of hoists a hoist of composition? That is:
\(\lfloor\mathrm{emb} \cdot \mathrm{g}\rfloor \cdot\lfloor\mathrm{emb} \cdot f\rfloor=\lfloor\mathrm{emb} \cdot g \cdot f\rfloor\)


\section*{example: renaming is functorial}


\section*{example: renaming is functorial}


\section*{example: renaming is functorial}


\section*{going back to FreeT}

Sadly, what we have seen is not enough to show that FreeT is a monad.

\section*{Luckily, free monads in Haskell have other kinds of similar properties.}

\title{
distributable free monads
}

Given
\(f: F \circ G \rightarrow G \circ F\)


\section*{distributable free monads}

\section*{Given}
\(f: F \circ G \rightarrow G \circ F\)
\(\langle f\rangle: F^{*} \circ G \rightarrow G \circ F^{*}\)


\section*{cancellation}
\(\langle f\rangle \cdot \mathrm{emb}=\mathrm{Gemb} \cdot f\)


\section*{reflection}
\[
\langle\mathrm{id}\rangle=\mathrm{id}
\]

fusion
\[
J\left\langle f^{\prime}\right\rangle \cdot\langle f\rangle K=\left\langle J f^{\prime} \cdot f K\right\rangle
\]


\section*{uniformity}
\[
f F^{*} \cdot\left\langle g \cdot F^{*} f\right\rangle=\langle f F \cdot g\rangle \cdot F^{*} f
\]


\section*{uniformity}

\section*{Kind of}
\[
(f g)^{*} f=f(g f)^{*}
\]
in Kleene algebra

Below, we prove that \(m \cdot \mu_{K}^{K}=M\left(\right.\) id \(\left.+\Sigma \mu_{K}^{K}\right) \cdot w\) and \(m \cdot K \mu^{K}=M\left(\right.\) id \(\left.+\Sigma K \mu^{K}\right) \cdot w\), which means that both \(\mu_{K}^{K}\) and \(K \mu^{K}\) are coalgebra homomorphisms \(\mu_{K}^{K}, K \mu^{K}\) : \(\left\langle K^{3}, w\right\rangle \rightarrow\left\langle K^{2}, m\right\rangle\). By uniqueness, \(\left.\left.\mu^{K} \cdot \mu_{K}^{K}=\llbracket m\right\rfloor \cdot \mu_{K}^{K}=\llbracket w\right\rfloor=\lceil m\rfloor \cdot K \mu^{K}=\) \(\mu^{K} \cdot K \mu^{K}\). Diagrammatically:

\section*{\(m \cdot \mu_{K}^{K}\)}
\(=\left\{\right.\) definition of \(m\), universal property of \(\left.\mu^{K}\right\}\)
\(M\left(\right.\) id \(\left.+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id}+\Sigma r_{K}^{K}+\mathrm{id}_{\Sigma K^{2}}\right) \cdot\) flat \(_{\mathrm{ld}+\Sigma K: \Sigma K^{2}}\) \(\cdot M\left(a+i d_{\Sigma K^{2}}\right) \cdot a_{K} \cdot \alpha_{K}^{-1} \cdot M\left(i d_{K}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id}_{K}+\mathrm{id} \mathrm{\Sigma K}^{2}+\Sigma \mu_{K}^{K}\right)\) - flat \({ }_{K+\Sigma K^{2} \Sigma K^{a}} \cdot M\left(\alpha_{K}+\mathrm{id}_{\Sigma K^{2}}\right) \cdot \alpha_{K^{2}}\)
\(=\left\{\right.\) camellation of \(a_{K}\) and \(\alpha_{K}^{-1}\), and naturality \(\left.o f a\right\}\)
\(M\left(\mathrm{id}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id}+\Sigma \eta_{K}^{K}+\mathrm{id}_{\Sigma K^{2}}\right) \cdot \mathrm{flat}_{14+\Sigma K . \Sigma K^{2}}\)
\(\cdot M\left(\mathrm{id}_{M(1 \mathrm{~d}+\Sigma K)}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id}_{M(\mathrm{~m}+\Sigma K)}+\mathrm{id}_{\Sigma K^{2}}+\Sigma \mu_{K}^{K}\right)\)
\(\cdot M\left(\alpha+i d_{\Sigma K^{2}}+\Sigma K^{2}\right) \cdot\) flat \(t_{K+\Sigma K^{2}} \Sigma K^{2} \cdot M\left(\alpha_{K}+i d_{\Sigma K^{2}}\right) \cdot \alpha_{K^{2}}\)
\(=\{\) naturality of flat \(\}\)
\(M\left(\mathrm{id}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id}+\Sigma \eta_{K}+\mathrm{id}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{idnd}+\Sigma K+\mathrm{gr}_{\Sigma K^{2}}\right)\) \(\cdot M\left(\mathrm{id}_{\mathrm{d}+\Sigma K}+\mathrm{id}_{\Sigma K^{2}}+\Sigma \mu_{K}^{K}\right) \cdot \mathrm{flat}_{\mathrm{md}+\Sigma K} \Sigma K^{2}+\Sigma K^{3}\)
\(\cdot M\left(\alpha+i d_{\Sigma K^{2}+\Sigma K^{2}}\right)+f l a t_{K+\Sigma K^{2}} \sum K^{2} \cdot M\left(\alpha_{K}+i d_{\Sigma K^{2}}\right) \cdot \alpha_{K^{2}}\)
\(=\{\) distributivity of composition over coporduct \(\}\)
\(M\left(\mathrm{id}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id} \mathrm{d}_{\mathrm{d}+\Sigma K^{2}}+\mathrm{g} r_{\Sigma K^{2}}\right)\)
\(\cdot M\left(i d_{d}+\Sigma \eta_{K}^{K}+i d_{\Sigma K^{2}}+\Sigma \mu_{K}^{K}\right) \cdot\) flat \(_{\mathrm{ld}+\Sigma K \Sigma K^{2}}+\Sigma K^{2}\)
\(\cdot M\left(a+i d_{\Sigma K^{2}}+\Sigma K^{2}\right) \cdot\) flat \(_{K+\Sigma K^{2}} \sum_{K^{2}} \cdot M\left(a_{K}+\mathrm{id} \mathrm{I}^{2}\right) \cdot \alpha_{K^{2}}\)
\(=\{\) naturality of gr , right unit for \(K\}\)
\(M\left(\mathrm{id}+\Sigma \mu_{K}^{K}\right) \cdot M\left(\mathrm{id}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id} \mathrm{dd}_{\mathrm{K}}+\Sigma K^{3}+g \Sigma_{\Sigma K^{3}}\right)\)

\(\cdot M\left(\alpha+i d_{\Sigma K^{2}+\Sigma K^{2}}\right) \cdot\) flat \(_{K+\Sigma K^{2}} \Sigma K^{2} \cdot M\left(\alpha_{K}+i d_{\Sigma K^{2}}\right) \cdot \alpha_{K^{2}}\)
\(=\{\) definition of \(w\}\)
\(M\left(\mathrm{id}+\Sigma \mu_{K}^{K}\right) \cdot w\)
\(m \cdot K \mu^{K}\)
\(=\{\) definition of \(m\}\)
\(M\left(\mathrm{id}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id}+\Sigma \eta_{K}^{K}+\mathrm{id} \Sigma K^{2}\right) \cdot\) flat \(_{\mathrm{Ld}+\Sigma K} \mathrm{\Sigma N}^{2}\) \(\cdot M\left(a+i d_{2 K^{2}}\right) \cdot a_{K} \cdot K \mu^{K}\)
\(=\{\) naturality of \(\alpha\}\)
\(M\left(\mathrm{id}+\mathrm{gr}_{\Sigma K^{2}}\right) \cdot M\left(\mathrm{id}+\Sigma \eta_{K}^{K}+\mathrm{id}_{\Sigma K^{2}}\right) \cdot\) flat \(_{\mathrm{md}+\Sigma K, \Sigma K^{2}}\) \(\cdot M\left(a+i d_{\Sigma K^{2}}\right) \cdot M\left(\mu^{K}+\Sigma K^{\prime} \mu^{K}\right) \cdot a_{K^{2}}\)
```

= {properties of coproducts }
M(id+ gr mKa
-M(\alpha+id
= {universal propenty of }\mp@subsup{\mu}{}{K}
M(id + gr EKN2

```

```

 -M(M((id + gr \SigmaK})+\mp@subsup{\textrm{id}}{\Sigma\mp@subsup{K}{}{3}}{})\cdotM(M(\textrm{id}+\mp@subsup{\textrm{id}}{\SigmaK}{}+\Sigma\mp@subsup{\mu}{}{K})+i\mp@subsup{\textrm{id}}{\Sigma\mp@subsup{K}{}{3}}{}
 -M(flat ta+\Sigma\mp@subsup{K}{}{2}\Sigma\mp@subsup{K}{}{2}}+\mp@subsup{\textrm{id}}{\Sigma\mp@subsup{K}{}{2}}{})\cdotM(M(\alpha+i\mp@subsup{d}{\Sigma\mp@subsup{K}{}{2}}{})+i\mp@subsup{\textrm{i}}{\Sigma\mp@subsup{K}{}{2}}{}
 - M(aK}+\mp@subsup{\textrm{id}}{\mp@subsup{\textrm{EN}}{}{2}}{2})\cdot\mp@subsup{\alpha}{\mp@subsup{K}{}{2}}{
 = {cancellation of }\alpha\mathrm{ and }\mp@subsup{\alpha}{}{-1}
M(id + gr \SigmaK2)
- M(iddM(|d+\SigmaK)}+\SigmaK\mp@subsup{\mu}{}{K}
. M(M(id+ gr\SigmaK})+\textrm{id
-M(flat m+\Sigma\mp@subsup{K}{}{2}\Sigma\mp@subsup{K}{}{2}}+\mp@subsup{\textrm{id}}{\Sigma\mp@subsup{K}{}{3}}{})\cdotM(M(\alpha+i\mp@subsup{d}{\SigmaK}{
- M(aK}+i\mp@subsup{|}{\sumK}{2})\cdot\mp@subsup{a}{\mp@subsup{K}{}{2}}{
= {naturality of flat }
MI(id + gr \Sigma\Sigma\mp@subsup{K}{}{2}
-M(id + gr mK + id\SigmaK\mp@subsup{K}{}{a}})\cdotM(\textrm{id}+\textrm{id}\SigmaK+\Sigma\mp@subsup{\mu}{}{K}+\textrm{id}⿰\mp@subsup{\Sigma}{\mp@subsup{K}{}{a}}{}
- fiat maEK\mp@subsup{K}{}{2}+\Sigma\mp@subsup{K}{}{2}\Sigma\Sigma\mp@subsup{K}{}{2}
-M(M(a+id
= {monad laws }
M(id+ gr \SigmaN\mp@subsup{N}{}{2}
. M(id + gr \SigmaK +id \SigmaK)}\cdotM(id+id\mp@subsup{d}{\SigmaK}{}+\Sigma\mp@subsup{\sum}{\mu}{K}+\textrm{i
.flat
- flat
= { naturality of gr }
M(id + gr mK2
-M(id}+\Sigma\eta\mp@subsup{\eta}{K}{K}+\Sigma\mp@subsup{\eta}{K}{K}+i\mp@subsup{\textrm{i}}{\Sigma\Sigma\mp@subsup{K}{}{2}}{})\cdotM(id|+\SigmaK+\SigmaK
-M(id+id
\cdotM(a+id
= {properties of coproducts }
M(id + gr \SigmaK',

```

```

 { naturality of 咲}
 M(id + gr EK\mp@subsup{K}{}{2}
    ```

```

 * M(a+id
 = {right unit for }K\mathrm{ , naturality of }\textrm{g}
    ```

```

 -M(id +\Sigma \Sigma(\eta\mp@subsup{K}{}{\prime}}\cdot\mp@subsup{\eta}{K}{K})+\Sigma\mp@subsup{\eta}{\mp@subsup{K}{}{2}}{N}+\textrm{id
 * M(\alpha+id\Sigma\mp@subsup{K}{}{2}}+\textrm{id
 = {definition of w}
M(id+\Sigma\SigmaK}\mp@subsup{\mu}{}{K})\cdot

more in the ICFP 2016 paper

- one more universal property (generalised fold)
- relationship between different universal properties
- a lot of further examples and an equational proof of a real-life theorem
- explanation where all these properties come from

