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HF Sets in Naive Set Theory

An HF set is a finite set of HF sets

Inductive definition

Pure sets

An HF set is a set whose transitive closure is finite

Transitive closure: least superset closed under elements of elements

We consider only wellfounded HF sets (e.g., x /∈ x)

All sets are well-founded in ZF set theory
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Epsilon Induction

A property p holds for all sets if ∀x . (∀z ∈ x . pz)→ px

Epsilon induction is valid iff all sets are well-founded
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Adjunction

x .y := {x} ∪ y

Similar to cons for lists

Can express membership: x ∈ y ↔ x .y = y
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HF Sets as Numbers (Ackermann 1937)

m ∈ n iff position m in binary representation of n is 1

Example: 21  10101  {4, 2, 0}

Yields model of ZF without infinity
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HF Sets Simplify Gödel’s Incompleteness Proof

Świerczkowski 2003

Paulson 2015 (formalisation in Isabelle/HOL)

Useful data structure for state sets of automata in HOL
(Paulson 2015)
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Peano Axiomatisation of Numbers

N : Type, 0 : N, S : N → N

∀p. p0→ (∀n.pn→ p(Sn))→ ∀n.pn
0 6= Sn

Sm = Sn→ m = n

Unique model (up to isomorphism)

Computationally complete if p : N → Type

Can define primitive recursion operator
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Axiomatisation of Binary Trees

T : Type, ∅ : T , . : T → T → T

∀p. p∅ → (∀xy .px → py → p(x .y))→ ∀x .px
∅ 6= x .y

x .y = x ′.y ′ → x = x ′ ∧ y = y ′

Unique model, computationally complete

Axiomatisation of lists is similar
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Axiomatisations of HF Sets

Different from ZF

Givant and Tarski 1977, Takahashi 1977 (classical)

∅, x .y , x ∈ y
induction principle based on ∅ and x .y
extensionality axiom

Previale 1994 (intuitionistic)

∅, x .y , x ∈ y , x ∈∗ y , x \ {y}
extensionality axiom

Kirby 2009 (classical)

∅, x .y
membership defined
no extensionality axiom
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Our Axiomatisation of HF Sets Agrees with Kirby’s

X : Type, ∅ : X , . : X → X → X

∀p. p∅ → (∀xy .px → py → p(x .y))→ ∀x .px
∅ 6= x .y

x .x .y = x .y cancel

x .y .z = y .x .z swap

x ∈ y .z → x = y ∨ x ∈ z membership

where

x ∈ y := (x .y = y)

p : X → Type
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Main Contributations

Minimal constructive axiomatization

Constructive proofs of extensionality and decidability

Construction of operations for transitive closure and cardinality

Unique model property (categoricity)

Everything in constructive type theory

Formalisation in Coq
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Extensionality Shown Together with Decidability

1 x ⊆ y and y ⊆ x are decidable

2 x ∈ y and y ∈ x are decidable

3 x ⊆ y → y ⊆ x → x = y

4 x = y is decidable

Proof by nested HF induction on x and y using several lemmas:

1 ∅ ⊆ x and x ⊆ ∅ and x ∈ ∅ and x = ∅ are decidable

2 If x = a and x ∈ y are decidable, x ∈ a.y is decidable

3 If a ∈ y and x ⊆ y are decidable, a.x ⊆ y is decidable

4 ∅ ∈ x is decidable

5 a ∈ x → Σu. x = a.u ∧ a /∈ u
provided a ∈ z and a = z are decidable for all z

Lemmas 4 and 5 follow by HF induction on x .
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Partition Operator

∀x . x = ∅+ Σay . x = a.y ∧ a /∈ y

Can be constructed with HF induction on x
using decidability of membership and equality
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Construction of Union x ∪ y

Recursive specification

∅ ∪ y = y

(a.x) ∪ y = a.(x .y)

Extensional specification

z ∈ x ∪ y ↔ z ∈ x ∨ z ∈ y

Both have unique solution

Recall: Axiomatisation doesn’t provide recursor

Both are satisfied by unique function of type

∀xy Σu ∀z . z ∈ u ↔ z ∈ x ∨ z ∈ y

obtainable with HF induction on x following recursive specification
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Naive Recursor Dosn’t Exist

f ∅ := ∅
f (a.x) := a

If f exists, all sets are equal: a = f (a.b.∅) = f (b.a.∅) = b
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Other Set Operations

big union

power set

separation

replacement

transitive closure

can be constructed similar to binary union
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Cardinality

Ordinals

O ∅
Ox

O(x .x)

Equipotence

∅ ∼ ∅
a /∈ x b /∈ y x ∼ y

a.x ∼ b.y

Cardinality relation

C∅∅
a /∈ x Cxα

C (a.x)(α.α)

Cardinality function can be obtained from cardinality relation

Subtype of ordinals yields model of Peano axioms
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Categoricity

Let X and Y be HF structures.
Construct an isomorphism between X and Y as follows:

Define inductive predicate R : X → Y → Prop

R∅∅
Rab Rxy

R(a.x)(b.y)

R is total

R is functional

follows with ∈-induction, extensionality, and
Rxy → a ∈ x → ∃b. b ∈ y ∧ Rab

R is symmetric

R yields isomorphism between X and Y
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Two Model Constructions

1 HF sets as numbers (Ackermann’s encoding)

2 Quotient of binary tree type

s, t, u ::= ∅ | s.t
s.s.t ≈ s.t cancel
s.t.u ≈ t.s.u swap
Quotient obtained as subtype of lexically sorted trees

∅ < s.t

s < s ′

s.t < s ′.t ′
t < t ′

s.t < s.t ′

Insertion sort provides normalizer for s ≈ t
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Formalisation in Coq

2000 lines of Coq

Tactic-based automation is essential for simple facts about sets

Coq proofs agree with mathematical proofs

Impredicative Prop (probably not essential)

Inductive types only needed for model construction
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Future Work

Dependently typed recursor

HF as least fixed point of finite sets: HF := finset (HF)

Non-wellfounded sets
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