Motivation Record type families Folding record schemes First-class subkinds Additional material
0000 0000 000 fo 00 000

A Generic Foundation for Record Combinators J

Wolfgang Jeltsch

Brandenburgische Technische Universitat Cottbus
Cottbus, Germany

21st International Symposium
on Implementation and Application of Functional Languages

September 23-25, 2009

Motivation
©000

Simple DIY record system

@ records as lists of name-value pairs:

data X =X
data rec :& field = rec :& field

data name ::: val = name := val

@ field names represented by type constructor and data
constructor:

data name = name

b-tu:

Motivation
0e00

Example record

o field names:

data Surname = Surname

data Age = Age
data Room = Room
@ record:

example :: X :& Surname ::: String

& Age o Int

:& Room ::: String
example = X :& Surname := " Jeltsch"

& Age =31

:& Room :="EH/202"

Brandenburgische

Motivation
fe1e] Yol

Modification

@ record of changes:

changes :: X :& Surname ::: String — String

& Age i Int — Int

:& Room ::: String — String
changes = X :& Surname := id

& Age =(+1)

:& Room := const "HG/2.14"

@ want a function that performs the modification:
modify changes example

@ should work with all types of records

Brandenburgische
U Technische Universitat

Motivation
oooe

Goal of this work

@ problem:

e modify works globally
e only field-based access with traditional record systems

@ no implementation for modify
@ no type for modify

@ in this talk: a record system that overcomes these deficiencies
@ no ad-hoc solution:

e generic foundation for building various record combinators
e modify as a special case

Record type families
®000

Specifying record type relationships
@ record type built from two ingredients:
scheme of form
X :& namey ::: sortq :& ... :& name,, ::: sort,

style a type-level function
@ value types of the record type:

style sorty, . .., style sort,

@ related record types from same scheme with different styles
@ declaration of record scheme types:

data X style = X
data (rec :& field) style = rec style :& field style

data (name ::: sort) style = name := style sort .ty :

Record type families
000

The type of modify

@ value types of data record used as sorts
@ two record styles:

plain Aval — val
modification Aval — (val — val)

@ class Record of all record schemes

e type of modify:

(Record rec) = rec (A\val — (val — val)) —
rec (Aval — val) —
rec (Aval — val)

@ problem: no \-expressions at the type level

t>.tLszﬂ, .

Record type families
[e1e] Yo)

Emulation of type-level \-expressions

type-level functions represented by phantom types

type synonym family that describes function application:

type family App fun arg

representation of type-level function Ao — 7:

data F
typeinstance App Fa =71

new declaration of field type:

data (name ::: sort) style = name := App style sort

technique known as defunctionalization b-tu

Record type families
ocooe

The type of modify with emulation

@ representations of plain and modification style:

data PlainStyle

data ModStyle

type instance App PlainStyle val = val

type instance App ModStyle val = val — val

o type of modify:

(Record rec) = rec ModStyle —
rec PlainStyle —
rec PlainStyle

Folding record schemes
®00

Implementation of modify as a class method

@ make modify a method of the Record class:

class Record rec where

modify :: rec ModStyle —
rec PlainStyle —
rec PlainStyle

instance Record X where ...

instance (Record rec) =
Record (rec :& name ::: val) where ...

@ problem: closed set of combinators

b-tu*

Folding record schemes
oeo

A generic record combinator

@ implementation of modify uses induction on record schemes
@ capture this induction principle with a fold on record schemes:

class Record rec where

fold :: thing X —
(Vrec name sort.(Record rec) =
thing rec — thing (rec :& name ::: sort)) —
thing rec

instance Record X where
fold nilAlt _ = nilAlt

instance (Record rec) =
Record (rec :& name ::: sort) where

fold nilAlt snocAlt = snocAlt $
fold nilAlt snocAlt b-tu -

Folding record schemes
ooe

Implementation of modify using fold

@ thing corresponds to type of modify:

newtype ModThing rec = ModThing (rec ModStyle —
rec PlainStyle —
rec PlainStyle)

@ actual implementation:

modify = case fold nilAlt snocAlt of
ModThing comb — comb where

nilAlt 2 ModThing X
nilAlt = ...

snocAlt :: (Record rec) =
ModThing rec —
ModThing (rec :& name ::: val)
snocAlt = ... ety .

Signal

First-class subkinds
©00000

records in the Grapefruit FRP library

@ signals have types of the form sig era val
@ want records of signals with common era
@ era goes into the style (unique for the whole record):

data SignalStyle era

sorts are pairs of a signal type and a value type:
data (sig :: % — x — x) ‘Of (val :: %)

style application adds the era:

type instance App (SignalStyle era)
(sig ‘Of " val) = sig era val

example of a signal record scheme:

(X :& Position ::: CSignal *Of* Point

:& IsActive ::: SSignal ' Of* Bool) bty s

First-class subkinds
0®0000

Subkinds for sorts

@ Record class allows arbitrary types of kind * as sorts
o (:&)-alternative of fold must work with all sorts of kind x:

Vrec name (sort :: *).(Record rec) =
thing rec — thing (rec :& name ::: sort)

@ problem: signal-related record combinators only work with
sorts of the form sig ‘Of" val

@ idea: allow arbitrary subkinds of * as kind of sorts
@ represent such subkinds as types:

data SigOfVal
@ use a type class to specify inhabitants of kinds:

class Inhabitant kind sort
instance Inhabitant SigOfVal (sig ‘Of* val) b-tuy s

First-class subkinds
00®000

Kind-polymorphic Record class

@ Record class parameterized by the kind of sorts:

class Record kind rec where
fold :: thing X
(Vrec name sort.
(Record kind rec, Inhabitant kind sort) =

—

thing rec — thing (rec :& name ::: sort))
thing rec
instance Record kind X where . ..

instance (Record kind rec,
Inhabitant kind sort) =

Record kind (rec :& name ::: sort) where ...

b.tu Techiache nver:

First-class subkinds
000®00

Closing kinds

have to give the (:&)-alternative for all sort with
Inhabitant SigOfVal sort

problem: new instances of Inhabitant can be added anytime

idea: enforce that for any item :: % — %,

Vsort.(Inhabitant SigOfVal sort) = item sort

[asd

V(sig %« — % — x) (val :: *).item (sig ‘Of " val)

force the user to implement methods that convert forward and
backwards between these types

not only for SigOfVal but analogously for any kind

b.tu Techiache nver:

First-class subkinds
0000®0

Implementation of kind closing (1)

e for every kind, give the specific form of universal
quantification and the forward conversion:
class Kind kind where
data Forall kind :: (x — %) — x

encase :: (Vsort.(Inhabitant kind sort) = item sort) —
Forall kind item

o specifically for SigOfVal:
type ForallSOV item = V/(sig :: x — % — x) (val 2 *).
item (sig 'Of* val)
instance Kind SigOfVal where
data Forall SigOfVal item = Forall (ForallSOV item)

encase item = Forall item ety .

First-class subkinds
00000e

Implementation of kind closing (2)

@ backwards conversion should have the type

Forall kind item — Vsort.(Inhabitant kind sort) = item sort
o forall hoisting leads to

Vsort.(Inhabitant kind sort) = Forall kind item — item sort
@ make backwards conversion a method of Inhabitant:

class Inhabitant kind sort where

specialize :: Forall kind item — item sort

@ implementation for SigOfVal:

instance Inhabitant SigOfVal (sig 'Of ' val) where

specialize (Forall item) = item bty s

Motivation Record type families Folding record schemes First-class subkinds Additional material
0000 0000 000 fo 00 000

A Generic Foundation for Record Combinators J

Wolfgang Jeltsch

Brandenburgische Technische Universitat Cottbus
Cottbus, Germany

21st International Symposium
on Implementation and Application of Functional Languages

September 23-25, 2009

Additional material
®00

s it really a fold?

@ compare it to fold on lists

@ heads of non-empty lists and complete list show up as
function arguments:

thing — (el — thing — thing) — [el| — thing
@ analogies between both folds:

head «<—— name and sort of last field

complete list «—— complete record scheme

@ last name, last sort, and complete record scheme do not show
up as arguments

b.tu Teciche Onersi

Additional material
oeo

Yes, it is!
@ applying equivalences to the type of fold:
e from universal quantification to dependent types:
Va:kt2(ank)—T
e inverse of forall hoisting:
Vaiukt—17 27 >Vaukt ifadg FV(1)

@ transformation result:

thing X
— (Vrec.(Record rec) = thing rec —
(name :: x) —
(sort ::x) —

thing (rec :& name ::: sort))
— (rec :: % — %)
— thing rec (A

Additional material
ooe

Signals in the Grapefruit FRP library

@ signals describe temporal behavior
o different types of signals:

discrete DSignal
segmented SSignal
continuous CSignal

e all signal types have two parameters (of kind x):

era phantom parameter that denotes the lifetime of
the signal
val value space of the signal

	Motivation
	Record type families
	Folding record schemes
	First-class subkinds
	
	Additional material

