
Motivation Record type families Folding record schemes First-class subkinds Additional material

A Generic Foundation for Record Combinators

Wolfgang Jeltsch

Brandenburgische Technische Universität Cottbus
Cottbus, Germany

21st International Symposium
on Implementation and Application of Functional Languages

September 23–25, 2009



Motivation Record type families Folding record schemes First-class subkinds Additional material

Simple DIY record system

records as lists of name-value pairs:

data X = X
data rec :& field = rec :& field
data name ::: val = name := val

field names represented by type constructor and data
constructor:

data name = name



Motivation Record type families Folding record schemes First-class subkinds Additional material

Example record

field names:

data Surname = Surname
data Age = Age
data Room = Room

record:

example :: X :& Surname ::: String
:& Age ::: Int
:& Room ::: String

example = X :& Surname := "Jeltsch"
:& Age := 31
:& Room := "EH/202"



Motivation Record type families Folding record schemes First-class subkinds Additional material

Modification

record of changes:

changes :: X :& Surname ::: String → String
:& Age ::: Int → Int
:& Room ::: String → String

changes = X :& Surname := id
:& Age := (+1)
:& Room := const "HG/2.14"

want a function that performs the modification:

modify changes example

should work with all types of records



Motivation Record type families Folding record schemes First-class subkinds Additional material

Goal of this work

problem:
modify works globally
only field-based access with traditional record systems

no implementation for modify
no type for modify

in this talk: a record system that overcomes these deficiencies
no ad-hoc solution:

generic foundation for building various record combinators
modify as a special case



Motivation Record type families Folding record schemes First-class subkinds Additional material

Specifying record type relationships

record type built from two ingredients:
scheme of form

X :& name1 ::: sort1 :& . . . :& namen ::: sortn

style a type-level function
value types of the record type:

style sort1, . . . , style sortn

related record types from same scheme with different styles
declaration of record scheme types:

data X style = X
data (rec :& field) style = rec style :& field style
data (name ::: sort) style = name := style sort



Motivation Record type families Folding record schemes First-class subkinds Additional material

The type of modify

value types of data record used as sorts
two record styles:

plain λval → val
modification λval → (val → val)
class Record of all record schemes
type of modify :

(Record rec)⇒ rec (λval → (val → val))→
rec (λval → val) →
rec (λval → val)

problem: no λ-expressions at the type level



Motivation Record type families Folding record schemes First-class subkinds Additional material

Emulation of type-level λ-expressions

type-level functions represented by phantom types
type synonym family that describes function application:

type family App fun arg

representation of type-level function λα→ τ :

data F
type instance App F α = τ

new declaration of field type:

data (name ::: sort) style = name := App style sort

technique known as defunctionalization



Motivation Record type families Folding record schemes First-class subkinds Additional material

The type of modify with emulation

representations of plain and modification style:

data PlainStyle
data ModStyle
type instance App PlainStyle val = val
type instance App ModStyle val = val → val

type of modify :

(Record rec)⇒ rec ModStyle →
rec PlainStyle →
rec PlainStyle



Motivation Record type families Folding record schemes First-class subkinds Additional material

Implementation of modify as a class method

make modify a method of the Record class:

class Record rec where
modify :: rec ModStyle →

rec PlainStyle →
rec PlainStyle

instance Record X where . . .

instance (Record rec)⇒
Record (rec :& name ::: val) where . . .

problem: closed set of combinators



Motivation Record type families Folding record schemes First-class subkinds Additional material

A generic record combinator

implementation of modify uses induction on record schemes
capture this induction principle with a fold on record schemes:

class Record rec where
fold :: thing X →

(∀rec name sort.(Record rec)⇒
thing rec → thing (rec :& name ::: sort))→
thing rec

instance Record X where
fold nilAlt _ = nilAlt

instance (Record rec)⇒
Record (rec :& name ::: sort) where

fold nilAlt snocAlt = snocAlt $
fold nilAlt snocAlt



Motivation Record type families Folding record schemes First-class subkinds Additional material

Implementation of modify using fold

thing corresponds to type of modify :

newtype ModThing rec = ModThing (rec ModStyle →
rec PlainStyle →
rec PlainStyle)

actual implementation:

modify = case fold nilAlt snocAlt of
ModThing comb → comb where

nilAlt :: ModThing X
nilAlt = . . .

snocAlt :: (Record rec)⇒
ModThing rec →
ModThing (rec :& name ::: val)

snocAlt = . . .



Motivation Record type families Folding record schemes First-class subkinds Additional material

Signal records in the Grapefruit FRP library

signals have types of the form sig era val
want records of signals with common era
era goes into the style (unique for the whole record):

data SignalStyle era

sorts are pairs of a signal type and a value type:

data (sig :: ∗ → ∗ → ∗) ‘Of ‘ (val :: ∗)

style application adds the era:

type instance App (SignalStyle era)
(sig ‘Of ‘ val) = sig era val

example of a signal record scheme:

(X :& Position ::: CSignal ‘Of ‘ Point
:& IsActive ::: SSignal ‘Of ‘ Bool)



Motivation Record type families Folding record schemes First-class subkinds Additional material

Subkinds for sorts

Record class allows arbitrary types of kind ∗ as sorts
(:&)-alternative of fold must work with all sorts of kind ∗:

∀rec name (sort :: ∗).(Record rec)⇒
thing rec → thing (rec :& name ::: sort)

problem: signal-related record combinators only work with
sorts of the form sig ‘Of ‘ val
idea: allow arbitrary subkinds of ∗ as kind of sorts
represent such subkinds as types:

data SigOfVal

use a type class to specify inhabitants of kinds:

class Inhabitant kind sort
instance Inhabitant SigOfVal (sig ‘Of ‘ val)



Motivation Record type families Folding record schemes First-class subkinds Additional material

Kind-polymorphic Record class

Record class parameterized by the kind of sorts:

class Record kind rec where
fold :: thing X →

(∀rec name sort.
(Record kind rec, Inhabitant kind sort)⇒
thing rec → thing (rec :& name ::: sort)) →
thing rec

instance Record kind X where . . .

instance (Record kind rec,
Inhabitant kind sort)⇒
Record kind (rec :& name ::: sort) where . . .



Motivation Record type families Folding record schemes First-class subkinds Additional material

Closing kinds

have to give the (:&)-alternative for all sort with
Inhabitant SigOfVal sort
problem: new instances of Inhabitant can be added anytime
idea: enforce that for any item :: ∗ → ∗,

∀sort.(Inhabitant SigOfVal sort)⇒ item sort
∼=

∀(sig :: ∗ → ∗ → ∗) (val :: ∗).item (sig ‘Of ‘ val)

force the user to implement methods that convert forward and
backwards between these types
not only for SigOfVal but analogously for any kind



Motivation Record type families Folding record schemes First-class subkinds Additional material

Implementation of kind closing (1)

for every kind, give the specific form of universal
quantification and the forward conversion:

class Kind kind where
data Forall kind :: (∗ → ∗)→ ∗
encase :: (∀sort.(Inhabitant kind sort)⇒ item sort)→

Forall kind item

specifically for SigOfVal :

type ForallSOV item = ∀(sig :: ∗ → ∗ → ∗) (val :: ∗).
item (sig ‘Of ‘ val)

instance Kind SigOfVal where
data Forall SigOfVal item = Forall (ForallSOV item)

encase item = Forall item



Motivation Record type families Folding record schemes First-class subkinds Additional material

Implementation of kind closing (2)

backwards conversion should have the type

Forall kind item→ ∀sort.(Inhabitant kind sort)⇒ item sort

forall hoisting leads to

∀sort.(Inhabitant kind sort)⇒ Forall kind item→ item sort

make backwards conversion a method of Inhabitant:

class Inhabitant kind sort where
specialize :: Forall kind item→ item sort

implementation for SigOfVal :

instance Inhabitant SigOfVal (sig ‘Of ‘ val) where
specialize (Forall item) = item



Motivation Record type families Folding record schemes First-class subkinds Additional material

A Generic Foundation for Record Combinators

Wolfgang Jeltsch

Brandenburgische Technische Universität Cottbus
Cottbus, Germany

21st International Symposium
on Implementation and Application of Functional Languages

September 23–25, 2009



Motivation Record type families Folding record schemes First-class subkinds Additional material

Is it really a fold?

compare it to fold on lists
heads of non-empty lists and complete list show up as
function arguments:

thing → (el → thing → thing)→ [el ]→ thing

analogies between both folds:

head←→ name and sort of last field
complete list←→ complete record scheme

last name, last sort, and complete record scheme do not show
up as arguments



Motivation Record type families Folding record schemes First-class subkinds Additional material

Yes, it is!

applying equivalences to the type of fold :
from universal quantification to dependent types:

∀α :: κ.τ ∼= (α :: κ)→ τ

inverse of forall hoisting:

∀α :: κ.τ → τ ′ ∼= τ → ∀α :: κ.τ ′ if α /∈ FV (τ)

transformation result:

thing X
→ (∀rec.(Record rec)⇒ thing rec →

(name :: ∗) →
(sort :: ∗) →
thing (rec :& name ::: sort))

→ (rec :: ∗ → ∗)
→ thing rec



Motivation Record type families Folding record schemes First-class subkinds Additional material

Signals in the Grapefruit FRP library

signals describe temporal behavior
different types of signals:

discrete DSignal
segmented SSignal
continuous CSignal

all signal types have two parameters (of kind ∗):
era phantom parameter that denotes the lifetime of

the signal
val value space of the signal


	Motivation
	Record type families
	Folding record schemes
	First-class subkinds
	
	Additional material

