Towards a Common Categorical Semantics for Linear-Time Temporal Logic and Functional Reactive Programming

Wolfgang Jeltsch

TTÜ Küberneetika Instituut
Tallinn, Estonia

28th Conference on the Mathematical Foundations of Programming Semantics

June 9, 2012
Temporal logic

- intuitionistic temporal logic with temporal operators □ and ◇:

\[F ::= A \mid \top \mid \bot \mid F \land F \mid F \lor F \mid F \rightarrow F \mid \Box F \mid \Diamond F \]

- dependance on time:
 - time-dependent whether a proposition is true
 - time-dependent whether a certain proof proves a proposition

- meaning of □ and ◇:
 - □ϕ ϕ holds at current and every future time
 - ◇ϕ ϕ holds at current or some future time
Functional reactive programming

- functional programming with additional type constructors
 - □ and ◊:
 \[
 T ::= A \mid 1 \mid 0 \mid T \times T \mid T + T \mid T \to T \mid □T \mid ◊T
 \]

- dependance on time:
 - time-dependent whether a type is inhabited
 - time-dependent whether a certain value inhabits a type

- inhabitants of □ and ◊:
 - □τ time-varying value of type τ (behavior)
 - ◊τ time and associated value of type τ (event)
Simple categorical semantics

- ingredients of a categorical model:
 \((T, \leq)\) totally ordered set of times
 \(C\) bicartesian closed category (BCCC)

- \(C^T\) is a categorical model of temporal logic:
 - object \(A\) maps times \(t\) to objects \(A(t)\) of \(C\)
 - \(f : A \rightarrow B\) maps times \(t\) to morphisms \(f(t) : A(t) \rightarrow B(t)\)

- endofunctors \(\Box\) and \(\Diamond\) defined as follows:
 \[
 (\Box A)(t) := \prod_{t' \geq t} A(t') \\
 (\Diamond A)(t) := \bigsqcup_{t' \geq t} A(t')
 \]

- possibly some infinite products and coproducts must exist in \(C\)

Goal

axiomatic semantics that covers this semantics as a special case
Inspiration

Satoshi Kobayashi
Monad as Modality
Theoretical Computer Science 175 (1997), pp. 29–74

Gavin Bierman and Valeria de Paiva
On an Intuitionistic Modal Logic
Basic structure

- bicartesian closed categories as the basis
- intuition of time independance:
 - $f : \llbracket \varphi \rrbracket \to \llbracket \psi \rrbracket$ models a proof showing that φ implies ψ at every time
 - $f : \llbracket \tau_1 \rrbracket \to \llbracket \tau_2 \rrbracket$ models a function from τ_1 to τ_2 that works at every time
- addition of endofunctors \Box and \Diamond
- gives us functor applications:

\[
\begin{array}{c}
\frac{f : A \to B}{\Box f : \Box A \to \Box B} \\
\frac{f : A \to B}{\Diamond f : \Diamond A \to \Diamond B}
\end{array}
\]
Monoidal functors

- □ is a strong monoidal functor on the cartesian structure (cartesian functor):
 \[□A \times □B ≅ □(A \times B) \]
 \[1 ≅ □1 \]

- ◊ is not a strong monoidal functor on the cocartesian structure:
 - natural transformations of these types would have to exist:
 \[◊(A + B) \to ◊A + ◊B \]
 \[◊0 \to 0 \]
 - correspond to non-causal functions in FRP
Comonads, monads, and tensorial strength

- \Box is a comonad:
 \[\varepsilon_A : \Box A \to A \]
 \[\delta_A : \Box A \to \Box \Box A \]

- \Diamond is a monad:
 \[\eta_A : A \to \Diamond A \]
 \[\mu_A : \Diamond \Diamond A \to \Diamond A \]

- \Diamond is \Box-strong:
 \[s_{A,B} : \Box A \times \Diamond B \to \Diamond (\Box A \times B) \]
functors \Box' and \Diamond' with the following properties:

\[
\Box A = A \times \Box' A
\]
\[
\Diamond A = A + \Diamond' A
\]

- \Box' is an ideal comonad:

\[
\delta'_A : \Box' A \to \Box' \Box A
\]

- \Diamond' is an ideal monad:

\[
\mu'_A : \Diamond' \Diamond A \to \Diamond' A
\]
Linear time

- require existence of a natural transformation r with
 \[r_{A,B} : \Diamond A \times \Diamond B \rightarrow \Diamond (A \circ B) \]

- definition of \circ:
 \[A \circ B := A \times B + A \times \Diamond' B + \Diamond' A \times B \]

- alternatives of $A \circ B$ reflect relations between
 the time t_A of $\Diamond A$ and the time t_B of $\Diamond B$:
 \[A \times B \quad t_A = t_B \]
 \[A \times \Diamond' B \quad t_A < t_B \]
 \[\Diamond' A \times B \quad t_A > t_B \]

- linearity of time is guaranteed:
 \[(t_A = t_B) \lor (t_A < t_B) \lor (t_A > t_B) \]

- time of $\Diamond (A \circ B)$ is the minimum of the above times:
 \[t_{A \circ B} = \min(t_A, t_B) \]
An advanced solution

- require existence of an operator $\langle \cdot, \cdot \rangle$ with
 \[
 f : C \rightarrow \diamond A \quad g : C \rightarrow \diamond B
 \]
 \[
 \langle f, g \rangle : C \rightarrow \diamond (A \odot B)
 \]
- require \odot to be a product functor in the Kleisli category of \diamond
- $\langle \cdot, \cdot \rangle$ is the $\langle \cdot, \cdot \rangle$-operator of \odot
- projections ϖ_1 and ϖ_2:
 - types:
 \[
 \varpi_1 : A \odot B \rightarrow \diamond A
 \]
 \[
 \varpi_2 : A \odot B \rightarrow \diamond B
 \]
 - types in verbose form:
 \[
 \varpi_1 : A \times B + A \times \diamond' B + \diamond' A \times B \rightarrow A + \diamond' A
 \]
 \[
 \varpi_2 : A \times B + A \times \diamond' B + \diamond' A \times B \rightarrow B + \diamond' B
 \]
 - definition of ϖ_1 and ϖ_2 is straightforward
The racing transformation in the advanced solution

- r can be derived from $\langle \cdot, \cdot \rangle$:

 $$r := \langle \pi_1, \pi_2 \rangle$$

- Product axioms ensure that r is an isomorphism with

 $$r^{-1} = \langle \mu(\Diamond \varpi_1), \mu(\Diamond \varpi_2) \rangle$$
Towards a Common Categorical Semantics for Linear-Time Temporal Logic and Functional Reactive Programming

Wolfgang Jeltsch

TTÜ Küberneetika Instituut
Tallinn, Estonia

28th Conference on the Mathematical Foundations of Programming Semantics

June 9, 2012