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Abstract
Recent research has revealed that the “always” and “eventually”
operators from temporal logic correspond to the type constructors
for behaviors and events from functional reactive programming
(FRP). It is furthermore well-known that the “until” operators from
LTL are generalizations of “always” and “eventually”. In this paper,
we show that behaviors and events can be generalized analogously.
The result is a notion of process, which combines continuous and
discrete aspects. We develop a common categorical semantics for
an intuitionistic temporal logic with “until” and FRP with processes.
This semantics reflects time-dependent trueness in temporal logic,
time-dependent type inhabitance in FRP, and causality of FRP
operations.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages; D.1.1 [Pro-
gramming Techniques]: Applicative (Functional) Programming;
F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic—Temporal logic

Keywords Functional Reactive Programming, Curry–Howard Cor-
respondence, Category Theory, Categorical Semantics, Causality

1. Introduction
Functional reactive programming (FRP) is a declarative approach to
programming reactive systems. Its key constructs are behaviors and
events. A behavior is a time-varying value, and an event is a value at-
tached to a time. There is a Curry–Howard correspondence between
FRP and an intuitionistic logic that has temporal operators “always”
and “eventually” and a linear notion of time [4–6]. Thereby the type
constructors for behaviors and events correspond to “always” and
“eventually”, respectively.

It is well-known that “always” and “eventually” can be defined
using the more general “until” operators from linear-time temporal
logic (LTL). This suggests that there are generalizations of behaviors
and events that correspond to proofs of “until” propositions. We
deal with this topic in Section 2 where we make the following
contributions:
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• We define an intuitionistic temporal logic with “until” operators
by giving a syntax and a categorical semantics. Afterwards we
construct an FRP dialect whose syntax and semantics correspond
to the syntax and semantics for that temporal logic. We show
that proofs of “until” propositions correspond to FRP values that
combine continuous and discrete aspects and cover behaviors
and events as special cases. We call these values processes.
• We give several examples of how processes can be applied.

These examples demonstrate that processes naturally represent
constructs in real world applications, and that process types can
be used to specify a variety of temporal protocols.

While the categorical semantics from Section 2 is appropriate
to motivate processes, it does not exactly match real FRP. FRP
programs are constructed using causal operations, so that they are
able to produce output solely on the basis of already known input.
The problem of the semantics from Section 2 is that it also models
noncausal operations. In Section 3, we deal with this issue and
thereby make the following contributions:

• We define concrete process categories (CPCs), which can serve
as categorical models of FRP with processes. CPCs focus
on the time-dependent knowledge about values, not on the
values themselves. This makes it possible to express causality
of FRP operations. On the logic side of the Curry–Howard
correspondence, CPCs lead to a new temporal logic, which we
call emergence logic (EL).
• We substantiate the claim that CPCs express causality by proving

that certain noncausal operations related to events do not have
meanings in arbitrary CPCs.

We discuss related work in Section 4 and give conclusions and
an outlook on further work in Section 5.

2. From “Until” to Processes
In this section, we show how “until” operators inspired by linear-
time temporal logic (LTL) [1] give rise to an FRP construct that
generalizes behaviors and events. We first develop an intuitionistic
temporal logic with “until” operators, and investigate its program-
ming language analog afterwards.

2.1 Temporal Logic with “Until” Operators
We consider a temporal logic that is intuitionistic and treats time as
linear, but not necessarily discrete.



If A denotes a set of atomic propositions, the syntax of our logic
can be defined by the following BNF rule:

F ::= A | > | ⊥ | F ∧ F | F ∨ F | F → F | ¬F | F B′′ F | F I′′ F |

F B′ F | F I′ F | F B F | F I F | �′F | ^′F | �F | ^F

The operators that do not come from propositional logic are called
temporal operators. They are further subdivided into strong “until”
operators (B′′, B′, and B), weak “until” operators (I′′, I′, and I), “al-
ways” operators (�′ and �), and “eventually” operators (^′ and ^).1
The unary operators bind stronger than the binary operators. Among
the binary operators, the “until” operators have the highest prece-
dence, followed by ∧, ∨, and→ in this order. We consider all binary
operators to be right-associative.

We now develop a categorical semantics for our logic. This
semantics is strongly related to one that we used in an earlier work [7,
Section 2] for a different temporal logic.

In our semantics, models are tuples (T,6,B) where (T,6) is
a totally ordered set, and B is a cartesian closed category with
coproducts (CCCC). We use (T,6) to represent the time scale and
B to model propositional logic in the well-known way [9]. Given
a model (T,6,B), we can regard T as a discrete category and form
the functor category BT . The objects of BT serve as meanings of
temporal propositions. Since these objects are functions that map
times to objects of B, temporal propositions denote time-varying
statements. A morphism f : A → B of BT is a family { ft}t∈T of
morphisms with ft : A(t) → B(t) for every t ∈ T ; so if A and B
model temporal propositions ϕ and ψ, f models a proof showing
that ϕ implies ψ at every time.

The CCCC structure of B gives rise to a CCCC structure
of BT , whose operations are pointwise applications of the respective
operations ofB. The CCCC structure ofBT models the propositional
fragment of our temporal logic. So operators >, ⊥, ∧, ∨,→, and ¬
work pointwise with respect to times; for example, a proposition
ϕ ∧ ψ holds at a certain time if ϕ and ψ individually hold at that
time.

A proposition ϕB′′ψ holds if ψwill hold at some future time, and
ϕ will hold until ψ holds. A proposition ϕ I′′ ψ holds additionally
if ϕ will hold forever, in which case ψ is not required to hold at
any future time. We model the logical operators B′′ and I′′ by two
functors B′′,I′′ : BT ×BT → BT that fulfill the following equations
for all morphisms f and g and times t:2

( f B′′ g)t =
∐

t′∈(t,∞)


 ∏

t′′∈(t,t′)

ft′′

 × gt′

 (1)

( f I′′ g)t = ( f B′′ g)t +
∏

t′∈(t,∞)

ft′ (2)

From these equations, we can easily derive how the functors B′′
and I′′ work on objects. This corresponds to the informal description
of the meanings of the logical operators B′′ and I′′ that we have
given above.

For the definitions of the functors B′′ and I′′ to work, all
products and coproducts of families indexed by intervals (t,∞) and
all products of families indexed by intervals (t, t′) must exist in B.
The latter requirement is covered by the former, since for any sets

1 Namjoshi and Trefler [12] use B for the “constrains” modality, while the
typical notation for strong “until” is U. We nevertheless decided to use
B for strong “until”, since U, being a letter, is not really suitable as an
infix operator, and furthermore B, unlike most infix operators, has a filled
variant I, which we can use to denote weak “until”.
2 The notation (t,∞) we use in these equations denotes the set {t′ ∈ T | t < t′}.
Note that such a set has a maximum if T has a maximum.

M and N with M ⊆ N and any family {Ax}x∈M of objects, we have∏
x∈M

Ax �
∏
x∈N

Âx (3)

with
{
Âx

}
x∈N

defined as follows:

Âx =

{
Ax if x ∈ M
1 otherwise

(4)

Since the axioms of a CCCC only guarantee the existence of finite
products and coproducts, and the intervals (t,∞) may be infinite, we
have to tighten our requirements on the category B. This leads to
the actual definition of our categorical models, which we call fan
categories.

Definition 1 (Fan category). A fan category is a tuple (T,6,B)
where (T,6) is a totally ordered set, and B is a CCCC that
has all products and coproducts of families indexed by intervals
(t,∞) ⊆ T. The actual category that (T,6,B) denotes is the functor
category BT .

We call the functors B′′ and I′′ the basic temporal functors of
the fan category (T,6,B). In particular, we say that B′′ is the strong
and I′′ is the weak basic temporal functor of this fan category. We
record this in the following definition.

Definition 2 (Basic temporal functors of a fan category). For any
fan category (T,6,B), the functors B′′,I′′ : BT × BT → BT that
are defined according to (1) and (2) are called the strong and the
weak basic temporal functor of (T,6,B).

Propositions ϕ B′ ψ and ϕ I′ ψ are similar to ϕ B′′ ψ and ϕ I′′ ψ,
but require ϕ to also hold at the present time. Propositions ϕBψ and
ϕ I ψ additionally hold if ψ holds at the present time, in which case
ϕ is not required to hold at any time. We do not treat B′, I′, B, and I
as fundamental, since we can define them in terms of B′′ and I′′:

ϕ B′ ψ = ϕ ∧ ϕ B′′ ψ ϕ I′ ψ = ϕ ∧ ϕ I′′ ψ (5)
ϕ B ψ = ψ ∨ ϕ B′ ψ ϕ I ψ = ψ ∨ ϕ I′ ψ (6)

A proposition �′ϕ holds if ϕ will always hold, and a proposition
^′ϕ holds if ϕ will hold at some future time. A proposition �ϕ
requires ϕ to also hold at the present time, and a proposition ^ϕ
additionally holds if ϕ holds at the present time. We define �′, ^′,
�, and ^ in terms of “until” operators:

�′ϕ = ϕ I′′ ⊥ ^′ϕ = > B′ ϕ (7)
�ϕ = ϕ I′ ⊥ ^ϕ = > B ϕ (8)

We can turn (5) through (8) into definitions of functors B′, I′, B,
I, �′, ^′, �, and ^ that model the corresponding logical operators.
All we have to do is replace propositions by morphisms and the
logical operators >, ⊥, ∧, and ∨ by the functors 1, 0, ×, and +.

Definition 3 (Derived temporal functors). If C is a CCCC equipped
with functors B′′,I′′ : C × C → C, the derived temporal functors
B′,I′,B,I : C × C → C and �′,^′,�,^ : C → C are defined as
follows:

f B′ g = f × f B′′ g f I′ g = f × f I′′ g (9)
f B g = g + f B′ g f I g = g + f I′ g (10)
�′ f = f I′′ 0 ^′ f = 1 B′ f (11)
� f = f I′ 0 ^ f = 1 B f (12)

Corollary 1. In every fan category, the following propositions hold:

�′ f �
∏

t′∈(t,∞)

ft′ ^′ f �
∐

t′∈(t,∞)

ft′ (13)

� f �
∏

t′∈[t,∞)

ft′ ^ f �
∐

t′∈[t,∞)

ft′ (14)



2.2 FRP with Processes
We now examine the FRP language that is connected to our tem-
poral logic from the previous subsection via a Curry–Howard cor-
respondence. Clearly, the type constructors of this FRP language
correspond to the operators of our temporal logic. As usual, the
analogs of the propositional logic operators are type constructors
for forming finite products, finite sums, and function spaces. The
analogs of temporal operators are temporal type constructors, which
we denote by the same symbols as their logical counterparts. So if
A denotes a set of atomic types that corresponds to the set of atomic
temporal propositions, the syntax of our FRP language is defined as
follows:3

T ::= A | 1 | 0 | T × T | T + T | T → T | T B′′ T | T I′′ T |

T B′ T | T I′ T | T B T | T I T | �′T | ^′T | �T | ^T

We handle precedence and associativity analogously to our temporal
logic.

Because of the Curry–Howard correspondence between our
FRP language and our temporal logic, we can take the categorical
semantics from the previous subsection as a semantics for FRP.

Let (T,6,B) be a fan category. Since B is a CCCC, it models a
system of ordinary types that comprises the type constructors for
finite products, finite sums, and function spaces. The objects in the
functor category BT are the meanings of FRP types. Since they are
functions that map times to objects of B, FRP types can be regarded
as functions from times to ordinary types. So it may depend on the
time what values inhabit a certain FRP type. If objects A and B
model FRP types τ1 and τ2, a morphism f : A → B denotes an
operation that turns any value that inhabits τ1 at some time into a
value that inhabits τ2 at the same time.

Finite products, finite sums, and functions spaces in FRP are
modeled by the CCCC structure of BT . So they are pointwise
applications of the respective constructions on ordinary types.

We can see from (13) how the type constructors �′ and ^′ work.
A value b that inhabits a type �′τ at a time t corresponds to a
function that maps each time t′ ∈ (t,∞) to a value that inhabits τ
at t′. So it denotes a time-varying value that persists forever once
it has come into existence. Such a value b is called a behavior. A
value e that inhabits a type ^′τ at a time t corresponds to a pair of a
time t′ ∈ (t,∞) and a value x that inhabits τ at t′. So e denotes an
event that occurs at t′ and is further characterized by x.

Types �′τ contain behaviors that start immediately after the
present time, and types ^′τ contain events that fire in the future. We
can see from (14) that the type constructors � and ^ are variants
of �′ and ^′ that also refer to the present. A behavior of a type �τ
starts at the present time, and an event of a type ^τ may also fire at
the present time.

Equation (1) shows that each value p that inhabits a type τ1B
′′ τ2

at a time t corresponds to a tuple with the following elements:

• a time t′ ∈ (t,∞)
• a function h that maps each time t′′ ∈ (t, t′) to a value that

inhabits τ1 at t′′

• a value z that inhabits τ2 at t′

The function h denotes a time-varying value that does not persist
forever, but vanishs immediately before t′. We call this time-varying
value the continuous part of p. The pair (t′, z) denotes an event
that immediately follows the continuous part. We call this event
the terminal event of p. The value p itself is called a process in
our terminology. We say that p emits the values h(t′′) and z at the
times t′′ and at the time t′, respectively.

3 We do not include a type constructor that corresponds to ¬, since such a
type constructor is uncommon, and ¬ϕ is just syntactic sugar for ϕ→ ⊥.

According to (2), a value of a type τ1 I
′′ τ2 covers all values

of type τ1 B
′′ τ2 and furthermore all behaviors over τ1. We regard

the latter as special processes that never terminate and thus have an
infinite continuous part and no terminal event.

The definitions of the logical operators B′, I′, B, and I in
(5) and (6) give rise to the following definitions of the corresponding
FRP type constructors:

τ1 B
′ τ2 = τ1 × τ1 B

′′ τ2 τ1 I
′ τ2 = τ1 × τ1 I

′′ τ2 (15)
τ1 B τ2 = τ2 + τ1 B

′ τ2 τ1 I τ2 = τ2 + τ1 I
′ τ2 (16)

Types τ1B
′ τ2 and τ2I

′ τ2 contain processes whose continuous parts
start at the present time instead of immediately after it. Types τ1Bτ2
and τ1 I τ2 additionally contain processes that already stop at the
present time, and whose continuous parts are therefore empty.

Temporal logic with “until” operators is more expressive than
temporal logic with only �′, ^′, �, and ^. Likewise the introduction
of processes expands the expressiveness of FRP. It turns out that the
additional expressiveness can be used in practice to specify various
temporal properties using types. Following we give examples of
such uses:

Finite time-varying values. Behaviors can only represent time-
varying values that last forever. In practice, however, we often
face situations where a time-varying value ceases to exist after
a finite period of time. For example when a media player
application plays back a song, it produces an audio signal of
finite length, because the song is finite. We can represent finite
time-varying values by inhabitants of types τ B 1. In the case of
the audio signal, we can use the type (R × R) B 1, assuming that
playback is in stereo. To represent time-varying values with no
termination guarantee, we can take types τ I 1 instead of τ B 1.

Termination-related information. Sometimes we want to de-
scribe information that arises when a time-varying value ends.
For example, playback in a media player can terminate be-
cause the song has ended or because the user canceled the
playback. We may want to state the reason for termination along
with the audio signal itself. We can do this via a value of type
(R × R) B (1 + 1).

Time-varying values whose type changes over time. There are
situations where the type of a time-varying value changes at
discrete points in time. For example, a media player might allow
for switching between stereo and mono playback, which means
that the audio signals it produces consist of intervals with values
of type R×R and intervals with values of type R. If we add least
and greatest fixpoints to our FRP type system, we can represent
such audio signals by FRP values. Several variants are possible,
specifying different properties of signals:
• The type

να . (R × R) I′ R I′ α

contains all stereo–mono signals that do not terminate.
• The type

να . (R × R) B′ R B′ α

additionally guarantees that a switch from stereo to mono or
back will always occur after a finite amount of time.
• The type

να . 1 + (R × R) I′ (1 + R I′ α)

contains all stereo–mono signals, terminating and nontermi-
nating.
• The type

να . 1 + (R × R) B′ (1 + R B′ α)



is like the previous one, except that it provides an additional
switch guarantee.
• Finally the type

µα . 1 + (R × R) B′ (1 + R B′ α)

contains just the terminating stereo–mono signals.

Weak events. Values of types ^′τ represent events that will defi-
nitely occur. In practice, however, we usually do not have an
occurrence guarantee. For example, we cannot describe the next
key press on the keyboard by a value of type ^′Key, because the
user might not press a key anymore. However we can use types
1 I′ τ to get rid of the occurrence requirement. For instance,
we can represent the potential next key press by a value of type
1 I′ Key.

This list of examples gives only a first idea of what is possible
with an FRP language that includes strong and weak process types.
Temporal protocols more complex than the above ones can be
specified with our FRP type system, in particular, by combining
processes and fixpoints with sums to allow for alternatives.

3. Concrete Process Categories
Fan categories capture the notions of time-dependent trueness of
propositions in temporal logic and time-dependent type inhabitance
in FRP. However they do not express causality of FRP operations.
In this section, we develop a novel categorical semantics for FRP
with processes that overcomes this problem. This semantics gives
rise to an intuitionistic temporal logic that comprises a notion of
time-dependent knowledge.

3.1 Causality
FRP values may contain information about the present and the future.
However information about a certain time is not available before
that time. So when an FRP program produces a value, we generally
do not know this value completely, but only its present-related
information. Its future-related information becomes increasingly
available as time progresses.

Let us illustrate this with an example. We consider a program
component P that gives the user some time to press a key on the
keyboard. P yields an event e of type ^′(Key+1). If the user presses
a key k before P times out, e fires at the time of the key press and
carries ι1(k) as its value. Otherwise, e fires at the timeout and carries
ι2(tt) as its value.

P yields e when it starts to wait for a key press. However all the
information that e provides refers to the time when e occurs. Until
this time, we cannot obtain any information about e. This is sensible,
because neither the occurrence time of e, nor the value it carries
can be known before e fires. We cannot know whether the user will
press a key before the timeout if neither a key has been pressed yet,
nor the timeout has occurred so far. Furthermore we cannot know
before a key press what key will be pressed at what time.

Let us now look at the type ^′Key + ^′1. A value of this type is
characterized by a value i ∈ {1, 2}, which denotes an alternative, and
a value of type^′Key or^′1, depending on i. The information given
by i is not tied to any future time, so it is available immediately.
If there was a polymorphic operation d that turned values of types
^′(τ1 + τ2) into values of types ^′τ1 +^′τ2, we could use d to know
in the present what the alternative of a future sum type value is. In
particular, we could apply d to the output of P to get a value of type
^′Key + ^′1 that tells us immediately whether the user will press a
key early enough. An operation that enables us to transfer certain
future knowledge to the present is a noncausal operation. Since
looking into the future is not possible for FRP programs, noncausal
operations like d cannot exist in FRP.

The absence of the operation d from FRP means that^′(ϕ∨ψ)→
^′ϕ ∨ ^′ψ cannot be a theorem in the logic that corresponds to
FRP. This is unlike classical temporal logic, where ^′(ϕ ∨ ψ) and
^′ϕ ∨ ^′ψ are equivalent.

The situation is analogous for nullary disjunction, which is ⊥. In
classical temporal logic, the propositions ^′⊥ and ⊥ are equivalent,
but ^′⊥ → ⊥ cannot be a theorem in the logical counterpart of FRP.
An FRP operation a from ^′0 to 0 would have to produce a value of
type 0 immediately under the assumption that it will receive a value
of type 0 in the future. Since there actually is no value of type 0,
a could only generate its result by using the hypothetical value of
type 0 it will receive later. However only a noncausal operation
could do this.

Unfortunately fan categories do not only model causal, but also
noncausal operations. In particular, they cover a natural isomorphism
^′(A + B) � ^′A + ^′B and an isomorphism ^′0 � 0. So the
semantics from Section 2 is actually not a proper semantics for FRP.
Therefore we develop a class of FRP models that take causality into
account. We call these models concrete process categories (CPCs).

3.2 Objects and Morphisms
The key problem of the semantics from Section 2 is that it considers
FRP values to be always known completely. Remember that an FRP
type τ is modeled by a function A : T → Ob(B) where for each t,
the object A(t) denotes the type of all values that inhabit τ at t. So
the semantics deals only with the inhabitants themselves, not with
the knowledge about them, which is often only partial.

To get rid of this problem, we modify the semantics such that
an object A that models an FRP type τ assigns objects of B to pairs
(t, to) of times with t 6 to. Thereby each object A(t, to) deals with the
FRP values that inhabit τ at t. It describes the type whose inhabitants
give the information we have about these FRP values at to. We call
to the observation time.

We now extend the semantics such that every object A addition-
ally maps each triple

(
t, to, t′o

)
with t 6 to 6 t′o to a morphism

A
(
t, to, t′o

)
: A

(
t, t′o

)
→ A(t, to)

that denotes a function that discards the information gathered after to.
Certain restrictions apply to the choice of morphisms A

(
t, to, t′o

)
:

• If the source and the target observation time are the same, no
information is actually discarded. So for all objects A and all
times t and to with t 6 to, the following equation must hold:

A(t, to, to) = idA(t,to) (17)

• Two consecutive steps of information disposal lead to the same
result as one corresponding single step. So for all objects A and
all times t, to, t′o, and t′′o with t 6 to 6 t′o 6 t′′o , the following
equation must hold:

A
(
t, to, t′′o

)
= A

(
t, to, t′o

)
A

(
t, t′o, t

′′
o
)

(18)

If A and B are objects that model FRP types τ1 and τ2, we want
the morphisms from A to B to model the causal transformations
from τ1 to τ2. An operation is causal if the information about its
output is uniquely determined by the information about its input for
any observation time. Therefore we define a morphism f : A→ B
to be a family of morphisms

f(t,to) : A(t, to)→ B(t, to)

with t 6 to where each morphism f(t,to) models a function that trans-
forms the respective input information into the corresponding output
information. If two such functions refer to the same inhabitation
time, but to different observation times, they must agree in how they
generate common output information. This means that for all t, to,



and t′o with t 6 to 6 t′o, the following diagram must commute:

A(t, to) A
(
t, t′o

)

B(t, to) B
(
t, t′o

)
f(t,t′o)

B
(
t, to, t′o

)

A
(
t, to, t′o

)
f(t,to) (19)

We can succinctly summarize the above development by saying
that the category whose objects model FRP types and whose
morphisms model causal operations is the functor category BI
where I is the temporal index category of (T,6) as defined by
the following definition.

Definition 4 (Temporal index category). The temporal index cate-
gory of a totally ordered set (T,6) is the category I with

Ob(I) = {(t, to) ∈ T × T | t 6 to}

and

homI
((

t′, t′o
)
,
(
t, to

))
=

{{(
t, to, t′o

)}
if t = t′ and to 6 t′o

∅ otherwise
.

Corollary 2. Let (T,6) be a totally ordered set and T be its
category. Then the temporal index category of (T,6) is isomorphic to
the coproduct of the slice categories of T op, that is,

∐
t∈T (T op ↓ t).

3.3 Products and Coproducts
The cartesian and the cocartesian structure of B give rise to a
cartesian and a cocartesian structure of BI, where products and
coproducts are formed pointwise. We use these structures of BI
to model finite products and finite sums. This is analogous to fan
categories, where we use the cartesian and the cocartesian structure
of the functor category BT for the same purpose.

The cocartesian structure of BI is particularly interesting. Let us
have a look at its implications on FRP:

• The coproduct of two objects of BI is given by the following
equation:

(A + B)(t, to) = A(t, to) + B(t, to) (20)
So if a is an FRP value that inhabits a type τ1 + τ2 at a time t,
we know the alternative that a belongs to at every time to > t,
including t itself.
• The coproduct of zero objects of BI is given by the following

equation:
0(t, to) = 0 (21)

So if we had an FRP value that inhabits 0 at a time t, we could
derive a contradiction at every time to > t, including t itself.

3.4 Exponentials
For modeling function spaces, we need BI to have exponentials.
However since the category I is typically not discrete, exponentials
in BI cannot be constructed pointwise in general and are not even
guaranteed to exist.

If B = Set, then BI is essentially a presheaf category. As a result,
all exponentials exist, and they can be defined via the following
equation:

BA(t, to) = HomBI
(
HomI

(
(t, to),−

)
× A, B

)
(22)

This equation can be generalized as follows to cover cases other
than B = Set:

BA(t, to) =

∫
(t∗ ,t∗o)∈I

∏
HomI((t,to),(t∗ ,t∗o))

B
(
t∗, t∗o

)A(t∗ ,t∗o) (23)

If t∗ = t and t∗o 6 to, then HomI
((

t, to
)
,
(
t∗, t∗o

))
is a terminal object

in Set, otherwise it is the initial object ∅. This leads to a simplified
version of (23):

BA(t, to) =

∫
t∗o∈[t,to]

B
(
t, t∗o

)A(t,t∗o) (24)

Exponentials in BI exist if and only if the ends in (24) exist.
Let us see what the above definition of exponentials means

for FRP. Say f inhabits a function type at a time t. The infor-
mation about f at a time to is characterized by a family of func-
tions

{
ft∗o

}
t∗o∈[t,to]

where for each observation time t∗o, ft∗o transforms
information about arguments into information about results, and all
ft∗o agree in how they generate common output information. Mor-
phisms BA (

t, to, t′o
)

denote FRP operations that discard information
by dropping all functions ft∗o with t∗o > to.

3.5 Weak Basic Temporal Functor
We model the process type constructor I′′ by a functor I′′, like in
the semantics from Section 2,

Let us see what information we have about a process p at an
observation time to. In any case, we know whether p has already
terminated or not. Our further knowledge about p depends on its
termination status:

• If p has terminated, we know the time when it terminated. All
values of its continuous part and the value of its terminal event
have been emitted already. However these values may refer to
the future; for example, they may be processes themselves. So
we might not know them completely. Our information about
them is limited by the observation time to.
• If p has not terminated (and will possibly never terminate at

all), we do not have any information about a terminal event.
Furthermore we do not know anything about the values of the
continuous part of p that will be emitted after to. We only
have information about the values of the continuous part up
to and including to, and this information is itself limited by the
observation time to.

To aid the definition of I′′, we introduce constructs that deal with
a more refined notion of information about processes. Let τ1 and τ2

be FRP types, and t, t†o, and t‡o be times with t 6 t†o 6 t‡o. For every p
that inhabits τ1 I

′′ τ2 at t, pt†o ,t
‡
o

shall denote the information we have
about p at t†o with the exception that all information about values
emitted by p shall use t‡o as the observation time. We introduce
a family

{
KA,B,t,t†o ,t

‡
o

}
of objects of B where A, B ∈ Ob

(
BI

)
and

t 6 t†o 6 t‡o. If A and B model FRP types τ1 and τ2, then KA,B,t,t†o ,t
‡
o

models the type of all pt†o ,t
‡
o

where p inhabits τ1 I
′′ τ2 at t. The

definition of KA,B,t,t†o ,t
‡
o

is as follows:

KA,B,t,t†o ,t
‡
o

=
∐

t′∈
(
t,t†o

]

 ∏

t′′∈(t,t′)

A
(
t′′, t‡o

) × B
(
t′, t‡o

) +

∏
t′∈

(
t,t†o

] A
(
t′, t‡o

) (25)

Applications of objects A I′′ B to objects of I can be easily
defined using the family

{
KA,B,t,t†o ,t

‡
o

}
:

(A I′′ B)(t, to) = KA,B,t,to ,to (26)

Now let us discuss information disposal for processes. Say A
and B are objects that model FRP types τ1 and τ2, and t, to, and t′o
are times with t 6 to 6 t′o. The morphism (A I′′ B)

(
t, to, t′o

)
models

an FRP operation that transforms pt′o ,t
′
o into pto ,to for every p that



inhabits τ1 I
′′ τ2 at t. This FRP operation can be defined as the

composition of two suboperations, one that turns values pt′o ,t
′
o into

values pto ,t′o , and another one that turns values pto ,t′o into values pto ,to .
We introduce two morphisms that model these two suboperations:

• The morphism σA,B,t,to ,t′o models the first step of information
disposal. It is defined as follows:

σA,B,t,to ,t′o : KA,B,t,t′o ,t
′
o → KA,B,t,to ,t′o

σA,B,t,to ,t′o =

[[
ξA,B,t,t′ ,to ,t′o

]
t′∈(t,t′o]

, ι2〈πt′ 〉t′∈(t,to]

] (27)

This definition uses helper morphisms ξA,B,t,t′ ,to ,t′o that are defined
in the following way:

ξA,B,t,t′ ,to ,t′o :

 ∏
t′′∈(t,t′)

A
(
t′′, t′o

) × B
(
t′, t′o

)
→ KA,B,t,to ,t′o

ξA,B,t,t′ ,to ,t′o =

{
ι1ιt′ if t′ 6 to

ι2〈πt′′ 〉t′′∈(t,to]π1 otherwise

(28)

• The morphism ρA,B,t,to ,t′o models the second of the abovemen-
tioned suboperations. Its definition is as follows:

ρA,B,t,to ,t′o : KA,B,t,to ,t′o → KA,B,t,to ,to

ρA,B,t,to ,t′o =
∐

t′∈(t,to]


 ∏

t′′∈(t,t′)

A
(
t′′, to, t′o

) × B
(
t′, to, t′o

) +∏
t′∈(t,to]

A
(
t′, to, t′o

) (29)

The definition of (A I′′ B)
(
t, to, t′o

)
is now simple:

(A I′′ B)
(
t, to, t′o

)
=

(
ρA,B,t,to ,t′o

) (
σA,B,t,to ,t′o

)
(30)

To complete the definition of the functor I′′, we have to specify
how I′′ acts on morphisms of BI. If morphisms f and g model FRP
operations u and v, the morphism f I′′ g models the FRP operation
that applies u to the values of the continuous part and v to the value
of the terminal event of the respective process. This leads to the
following definition:

( f I′′ g)(t,to) =
∐

t′∈(t,to]


 ∏

t′′∈(t,t′)

f(t′′ ,to)

 × g(t′ ,to)

 +
∏

t′∈(t,to]

f(t′ ,to) (31)

3.6 Concrete Process Categories So Far
Before we discuss how to model the type constructor B′′, let us
compile what we have developed so far.

We have devised categorical models that are tuples (T,6,B)
where (T,6) is a totally ordered set, and B is a CCCC. There are
two things that constrain the choice of the category B:

• We must be able to define the functor I′′. Therefore products
of families indexed by intervals (t, t′) as well as products and
coproducts of families indexed by intervals (t, t′] must exist.
Existence of products and coproducts for intervals (t, t′] implies
existence of products and coproducts for intervals (t, t′).4 The
converse is also true, since we have∏

t′′∈(t,t′]

At′′ =

 ∏
t′′∈(t,t′)

At′′

 × At′

4 We discussed the product case in Subsection 2.1. The coproduct case is
analogous.

and likewise for coproducts. So it is okay to require the exis-
tence of products and coproducts of families indexed by inter-
vals (t, t′).5

• The functor category BI must have exponentials. So the ends
in (24) must exist.

Given these considerations, we arrive at the definition of CPCs.

Definition 5 (Concrete process category). Let (T,6) be a totally
ordered set, I be its temporal index category, and B be a CCCC
that has all products and coproducts of families indexed by intervals
(t, t′) ⊆ T and all ends of the form

∫
t′′∈[t,t′]

B(t, t′′)A(t,t′′) where
A, B ∈ BI. Then the tuple (T,6,B) is a concrete process category
(CPC). The actual category that (T,6,B) denotes is the functor
category BI.

We now give the definition of the functor I′′, which we call weak
basic temporal functor, like we did in the case of a fan category.

Definition 6 (Weak basic temporal functor of a CPC). For any CPC
(T,6,B), the functor I′′ : BI × BI → BI that is defined according
to (26), (30), and (31) is called the weak basic temporal functor of
(T,6,B).

The only remaining bit of our categorical semantics is a functor
that models the type constructor B′′. Functors that model the
remaining temporal type constructors can be derived according
to Definition 3, like for fan categories.

3.7 Strong Basic Temporal Functor
Processes of a type τ1 B

′′ τ2 are guaranteed to terminate. However it
is not immediately clear whether such a constraint can be encoded
using CPCs, and how it can be encoded if this is possible. The reason
is that CPCs only deal with information we have at different times.
This does not play well with global properties like the existence of
termination times that can be arbitrarily far in the future. That said, it
is possible to define a functor that models process type constructors
that place an upper bound on the termination time. We try to define
a meaning of the type constructor B′′ based on this functor.

Let T be the category of (T,6). We introduce the functor

B′′− : T →
(
BI

)BI×BI
such that for every tb, the functor

B′′tb : BI × BI → BI

models a process type constructor B′′tb that enforces a maximum tb
on termination times. So if A and B model FRP types τ1 and τ2, the
object A B′′tb B models the type τ1 B

′′
tb τ2 of all processes that are

inhabitants of τ1 B
′′ τ2 and terminate at tb or before. This leads to

the following definition:(
A B′′tb B

)
(t, to) =

0 if tb < t∐
t′∈(t,tb]

((∏
t′′∈(t,t′) A(t′′, to)

)
× B(t′, to)

)
if t 6 tb 6 to

(A I′′ B)(t, to) if to < tb

(32)

We leave the definition of morphisms
(
A B′′tb B

) (
t, to, t′o

)
as an ex-

ercise to the reader. We also do not show explicitly how to define
applications of B′′tb to morphisms ofBI, since the respective equation
can be easily derived from (32) by doing some simple replacements.

So far, we have dealt with applications of B′′− to objects tb of T .
We still have to discuss applications of B′′− to morphisms of T . Let
tb and t′b be times with tb 6 t′b, and let A and B model FRP types τ1

5 Note that with a discrete time scale, this requirement is automatically
fulfilled, since all intervals (t, t′) are finite in this case.



and τ2. We define AB′′(tb ,t′b)
B such that it models the type conversion

from τ1 B
′′
tb τ2 to τ1 B

′′

t′b
τ2:6

(
A B′′(tb ,t′b)

B
)

(t,to)
=


? if tb < t
[ιt′ ]t′∈(t,tb] if t 6 tb 6 t′b 6 to

ι1[ιt′ ]t′∈(t,tb] if t 6 tb 6 to < t′b
id if to < tb 6 t′b

(33)

Definition 7 (Bounding temporal functor of a CPC). For any CPC
(T,6,B), the functor B′′− as defined above is called the bounding
temporal functor of (T,6,B).

For any FRP types τ1 and τ2 and any time t, the inhabitants of
τ1 B

′′ τ2 at t are the values that inhabit any type τ1 B
′′
tb τ2 at t. So B′′

is the union of all B′′tb , which means that it is the least upper bound of
them. As a result, a functor B′′ must be a colimit of the functor B′′− .

Definition 8 (Strong basic temporal functor of a CPC). Let (T,6,B)
be a CPC and B′′− be its bounding temporal functor. If B′′− has a
colimit B′′, this colimit is called the strong basic temporal functor
of (T,6,B).

Let us see if a strong basic temporal functor is guaranteed to exist
and in case it is, whether it really models the type constructor B′′.
The situation is good if the time scale has a maximum tmax. In
this case, the type constructor B′′ is equivalent to B′′tmax

, and the
categorical semantics is in line with this.

Theorem 3. Let (T,6,B) be a CPC where (T,6) has a maxi-
mum tmax. Then B′′tmax

is a colimit of B′′− with injections given by
ιtb = B′′(tb ,tmax).

Proof. The claim is true because tmax is a terminal object of T with
!tb = (tb, tmax). �

Unfortunatly the situation is not so good if time will always
progress. In this case, CPCs are not able to express the termination
requirement at all.

Theorem 4. Let (T,6,B) be a CPC where for every t ∈ T, there is a
t′ > t. Then I′′ is a colimit of B′′− with injections ιtb given by the
following equation:

(
ιtb

)
(A,B),(t,to)

=


? if tb < t
ι1[ιt′ ]t′∈(t,tb] if t 6 tb 6 to

id if to < tb

(34)

Proof. We show that for all objects A and B of BI and all times t
and to with t 6 to, (AI′′ B)(t, to) is a colimit of (AB′′− B)(t, to) where
the injection for a tb is

(
ιtb

)
(A,B),(t,to)

. From this follows the claim of
the theorem.

Let us fix some concrete A, B, t, and to. There exists a time t∗b
with t∗b > to. We define a preorder 4 on T such that tb 4 t′b if and
only if (

tb 6 t′b
)
∨

(
tb > t′b > t∗b

)
.

Let T̃ be the category of (T,4), and let the functor Q : T̃ → B be
defined by the following equations:

Qtb =
(
A B′′tb B

)
(t, to) (35)

Q
(
tb, t′b

)
=


(
A B′′(tb ,t′b)

B
)

(t,to)
if tb 6 t′b

id if tb > t′b > t∗b
(36)

6 We use ? to denote the unique morphisms from 0 to the different objects
of B.

Since t∗b is a terminal object of T̃ with !tb =
(
tb, t∗b

)
, the object

Qt∗b =

(
A B′′t∗b B

)
(t, to) = (A I′′ B)(t, to)

is a colimit of Q with injections Q
(
tb, t∗b

)
=

(
ιtb

)
(A,B),(t,to)

. The
cocones over Q are exactly the cocones over (AB′′−B)(t, to). Therefore
(A I′′ B)(t, to) is also a colimit of (A B′′− B)(t, to) with injections(
ιtb

)
(A,B),(t,to)

. �

Let us see what the reason for the mismatch between FRP
and its categorical models in the case of an always progressing
time is. We motivated our definition of B′′ with the observation
that the type constructor B′′ is the least upper bound of the type
constructors B′′tb . Theorem 4 tells us that the type constructor I′′ is
the least upper bound of the type constructors B′′tb if we only consider
type constructors that can be modeled in CPCs. So the bottom line
of Theorem 4 is that CPCs are unable to express the termination
requirement of B′′. This is an unfortunate weakness of CPCs. In the
future, we want to develop a more general categorical semantics that
allows us to model B′′ precisely without requiring the time scale to
have a maximum.

3.8 Causality Again
We developed CPCs, because we wanted a categorical semantics
that expresses causality of FRP operations. In particular, we wanted
a semantics that does not model polymorphic operations from
^′(τ1 + τ2) to ^′τ1 + ^′τ2 and operations from ^′0 to 0, since
such operations cannot be causal. In the following, we show that
meanings of such operations do not exist in CPCs in general.

Theorem 5. There are CPCs where no natural transformation τ
with τ(A,B) : ^′(A + B)→ ^′A + ^′B exists.

Proof. Let (T,6,B) be a CPC with the following properties:

• T contains exactly two times t1 and t2 with t1 < t2.
• The object 1 + 1 in B is not a terminal object.

Let furthermore I be the temporal index category of (T,6). We
assume that there is a natural transformation τ : R → S , where
R( f , g) = ^′( f + g) and S ( f , g) = ^′ f + ^′g. From τ, we can
construct the natural transformation

τ(∆ × ∆) : R(∆ × ∆)→ S (∆ × ∆) ,

where ∆ denotes the diagonal functor from B to BI. The func-
tors R(∆ × ∆) and S (∆ × ∆) are objects of the category

(
BI

)B×B
.

There is a canonical isomorphism between this category and the
category

(
BB×B

)I
. Applying this isomorphism to τ(∆ × ∆) yields a

natural transformation σ with(
σ(t,to)

)
(X,Y) =

(
τ(∆X,∆Y)

)
(t,to)

for all objects X and Y of B and all times t and to with t 6 to.
Naturality of σ implies that the following diagram commutes:

R(∆X,∆Y)(t1, t1) R(∆X,∆Y)(t1, t2)

S (∆X,∆Y)(t1, t1) S (∆X,∆Y)(t1, t2)

(
σ(t1 ,t2)

)
(X,Y)

S (∆X,∆Y)(t1, t1, t2)

R(∆X,∆Y)(t1, t1, t2)

(
σ(t1 ,t1)

)
(X,Y)

(37)

According to (11), (9), and Theorem 3, we have

^′ = 1 B′ − = 1 × 1 B′′ − � 1 B′′ − � 1 B′′t2 − .



Using this fact as well as Definition 7, we can turn the above
diagram into a simpler one, replacing objects by other objects that
are isomorphic to them and adapting morphisms accordingly:

1 X + Y

1 + 1 X + Y

(
ρt2

)
(X,Y)

!X + !Y

!X+Y

(
ρt1

)
(X,Y)

(38)

Here ρt1 and ρt2 are natural transformations that work like σ(t1 ,t1)
and σ(t1 ,t2) up to isomorphism. Since all natural transformations
from the coproduct functor to itself are of the form α + β with
α, β : Id→ Id, we know that((

ρt1

)
(X,Y)

)
(!X+Y ) = (!X + !Y )

((
ρt2

)
(X,Y)

)
= !X + !Y

for all X,Y ∈ Ob(B). For X = Y = 1, this means that((
ρt1

)
(1,1)

)
(!1+1) = !1 + !1 = id1 + id1 = id1+1 .

On the other hand, we have

(!1+1)
((
ρt1

)
(1,1)

)
= !1 = id1 .

So 1 + 1 � 1, which contradicts our requirement that 1 + 1 is not a
terminal object. �

There is a proof of Theorem 5 that works with any time domain
that contains at least two elements and has a maximum, not just with
time domains that contain exactly two elements. However this proof
is more complicated, so we did not present it here.

Theorem 6. There are CPCs where no morphism from ^′0 to 0
exists.

Proof. Let (T,6,B) be a CPC with the following properties:

• T contains at least two times t1 and t2 with t1 < t2.
• The object 0 in B is not a terminal object.

We assume that there is a morphism from ^′0 to 0. Since ^′0 �
1 B′′ 0, there is also a morphism f : 1 B′′ 0→ 0. Let ιt2 : B′′t2 → B

′′

be the colimit injection for t2, and let g be f
((
ιt2

)
(1,0)

)
. Then we have

g : 1 B′′t2 0→ 0 and thus

g(t1 ,t1) :
(
1 B′′t2 0

)
(t1, t1)→ 0 .

However
(
1 B′′t2 0

)
(t1, t1) is isomorphic to 1, so g(t1 ,t1) is a morphism

from a terminal object to the initial object 0. As a result, 0 is also a
terminal object, which contradicts our premises. �

3.9 Emergence Logic
As we have seen, fan categories are not proper models of FRP, since
they do not express causality. As a result, the logic described in
Subsection 2.1, which uses fan categories as its models, is not a
precise Curry–Howard correspondent of FRP. However by using
CPCs instead of fan categories, we get a temporal logic that matches
FRP exactly. We call this logic emergence logic (EL), since the
notion of knowledge emerging over time is inherent in it.

Although many ideas behind EL come from LTL, EL and LTL
differ in several ways. For a detailed comparison of both logics see
Appendix A.

4. Related Work
Frob is a Haskell library for programming robots with FRP. It
contains support for what the authors call processes [15] or tasks [2,
13, 14]. Processes and tasks in the Frob sense are similar to our
processes, but differ in two important ways:

• Frob processes can cover effects like exception handling and
interrupt monitoring, while our processes are pure values.
• Even Frob processes without effects generally carry more in-

formation than our processes. This is because the fundamental
constructs in Frob are not processes, but behaviors and event
streams. A Frob process p without effects can only be con-
structed as a pair of a behavior b and an event stream s. If s is
empty, then p does not terminate, and b is the continuous part
of p. Otherwise the first event in s is the terminal event of p,
and the prefix of b that ends just before the terminal event is
the continuous part of p. So the suffix of b that starts when the
process terminates and all events in s that follow the terminal
event are superfluous.

We think that our notion of process that comes out naturally as an
analog of an “until” proof is preferable, since it avoids the problem
of superfluous information and can serve as the fundamental FRP
concept from which the classical notions of behavior and event can
be derived concisely.

Krishnaswami and Benton [8] use the category of complete 1-
bounded ultrametric spaces and nonexpansive maps as a model
of FRP. The FRP dialect they consider has a discrete notion of
time and uses streams as its fundamental temporal construct. The
authors prove that nonexpansiveness corresponds to causality, so
that morphisms in their semantics only model causal operations.
Streams are essentially behaviors in the case of discrete time. So it
might be possible to generalize the approach of Krishnaswami and
Benton to handle an FRP dialect that works with arbitrary linear
time scales and uses behaviors as its only temporal core construct.
However we cannot see at the moment, how we could extend this
approach such that it covers FRP with processes.

Jeffrey [4] presents an implementation of FRP in the dependently
typed programming language Agda. His approach to FRP is in
the tradition of Yampa [3] in that it uses signal functions as the
core construct of FRP. A signal is a time-varying value that spans
the whole time scale, and a signal function is a function that
turns one source signal into one target signal. Jeffrey defines a
category RSet, which is similar to our fan categories. However
he interprets morphisms in RSet as signal functions that work
pointwise. Jeffrey furthermore extends the RSet category using the
“constrains” modality introduced by McMillan [11]. The morphisms
of the resulting category model causal signal functions.

Our own work on the foundations of FRP covers the develop-
ment of axiomatically defined categorical models of FRP without
processes, called temporal categories [7]. Temporal categories are
a specialization of categorical models of intuitionistic S4. Fan cat-
egories are special cases of temporal categories. We strongly con-
jecture that also CPCs are temporal categories, but have not proved
this yet.

There is an interesting connection between CPCs and a logic
developed by Maier [10], which is based on LTL. The time scale of
LTL is the totally ordered set of natural numbers. A typical semantics
of LTL is based on ω-words over the alphabet P(AP) where AP is
the set of atomic propositions. Each ω-word α denotes the situation
where each atomic formula p is true at a time t if and only if p ∈ αt.
The meaning of a proposition ϕ is the set of all ω-words that denote
situations where ϕ holds at time 0.

Maier’s logic differs from LTL in that its semantics also allow
finite words. As a result, the law of excluded middle does not



hold anymore.7 So Maier calls his logic intuitionistic LTL (ILTL).
Maier also gives a new characterization of safety and liveness and
proves that each ILTL proposition is equivalent to a conjunction of
a safety and a liveness part. It turns out that for every proposition ϕ,
the safety part of ϕ is characterized by the finite words in ~ϕ�,
while the liveness part of ϕ is characterized by the infinite words
in ~ϕ�. So if we change Maier’s semantics to only allow finite
words, we obtain a logic that can only express safety properties and
therefore corresponds to the subset of ILTL that contains all ILTL
operators except B. This is analogous to CPCs, which consider only
knowledge about finite time intervals and cannot express B in the
case of an unlimited time scale.

5. Conclusions and Further Work
We have shown that proofs of “until” propositions in temporal
logic correspond to values in FRP that combine continuous and
discrete aspects. We have called these values processes and shown
their usefulness. Furthermore we have introduced concrete process
categories (CPCs). CPCs can serve as models of FRP with processes
and its corresponding temporal logic. In particular, causality of FRP
operations is captured by CPCs. We have shown that CPCs cannot
express termination guarantees for processes if a time scale with no
maximum time is used.

In the future, we want to develop an axiomatically defined
categorical FRP semantics that covers both CPCs and temporal
categories [7] as special cases. Furthermore we want to extend this
semantics such that it covers additional computational concepts
like, for example, recursion. We also want to use concepts from
categorical FRP semantics in the interface design and possibly the
implementation of FRP systems.

A. Comparison of EL and LTL
LTL [1] is a classical logic that uses a discrete time scale. Its fun-
damental temporal operators are “next” (�), “always” (�), “eventu-
ally” (^), and strong “until” (B). EL is an intuitionistic and causal
version of LTL without the requirement of a discrete time scale.
An immediate consequence of the latter is that we do not have an
operator �. The operators � and ^ are not fundamental in EL, be-
cause they can be derived, as shown in Subsection 2.1. It remains
to discuss how and why EL and LTL differ in their treatment of the
“until” operators.

LTL does not explicitly require a weak “until” operator to exist.
This is because the I-operator can be derived from other operators.
One possible way of doing this is the following:

ϕ I ψ = ¬(¬ψ B ¬(ϕ ∨ ψ)) (39)

This definition is not possible in EL for three different reasons:

It does not work in an intuitionistic logic. This can already be
seen by looking at the categorical semantics from Subsection 2.1.
In this semantics, the isomorphism

f I g � ((g→ 0) B (( f + g)→ 0))→ 0

would have to hold, which is not the case in general.

It is not compatible with causality. Say there is a time t at which
ϕIψ and ¬ψ hold for some formulas ϕ and ψ. If ϕIψ would be
equivalent to ¬(¬ψ B ¬(ϕ ∨ ψ)), then (¬ψ B ¬(ϕ ∨ ψ)) → ⊥
would hold at t. A proof of this would include a proof of
(¬ψ ∨ ¬(ϕ ∨ ψ)) → ⊥, referring to the knowledge we have
at t. However such a proof does not exist, as ¬ψ and therefore
¬ψ ∨ ¬(ϕ ∨ ψ) holds at t.

7 This is remarkable, since the semantics are essentially based on truth values.

It does not work with every time domain. Let us assume, for ex-
ample, that our time domain is (T,6) with T = {0}∪

{
n−1

∣∣∣ n ∈ N
}

and 6 being the ordinary order of the reals restricted to T . Let us
pretend that our logic is classical and does not take causality into
account. Say there are propositions ϕ and ψ such that ϕ ∧ ¬ψ
holds at time 0, and ¬ϕ ∧ ψ holds at every other time. Then the
formula ¬(¬ψ B ¬(ϕ ∨ ψ)) is true at time 0, but ϕ I ψ is not true
at time 0, because there is no least time at which ¬ϕ ∧ ψ.

Another way of defining I in LTL is as follows:8

ϕ I ψ = ϕ B ψ ∨ �ϕ (40)

This definition requires � to be fundamental, but � is not funda-
mental in EL. What is more, this definition is incompatible with
causality: a proof of ϕ B ψ ∨ �ϕ tells us immediately whether we
have termination or not, while a proof of ϕIψ does not tell us about
termination in advance.

Another difference between EL and LTL is that the fundamental
“until” operators of EL are the future-only operators I′′ and B′′,
while the fundamental “until” operator of LTL is B (from which I
can be derived, as we have seen). We have shown in Subsection 2.1
that I and B can be defined in terms of I′′ and B′′. In LTL, it is also
possible to define I′′ and B′′ in terms of I and B as follows:

ϕ I′′ ψ = �(ϕ I ψ) ϕ B′′ ψ = �(ϕ B ψ) (41)

We do not have this option in EL, because we do not have �, which
is why we start with I′′ and B′′.
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