
Chapter 14

Improving Push-based FRP
Wolfgang Jeltsch1

Category: Research

Abstract: Push-based implementations of Functional Reactive Programming al-
low for writing reactive programs in a declarative style and execute them effi-
ciently. Previous approaches in this area are not able to combine simultaneously
occuring internal events. This may lead to efficiency problems and introduction of
inconsistent intermediate states. Most of these implementations also lack declar-
ative means to describe systems with feedbacks. We limit ourselves to the data
flow aspects of FRP and present an implementation which does not suffer from
these deficiencies. This leads to a foundation for FRP which is more declarative
than previous solutions and more efficient at the same time.

14.1 INTRODUCTION

Functional Reactive Programming (FRP) makes it possible to implement reactive
systems in a declarative way. It is based on the notions of discrete and continuous
signals. A discrete signal is a sequence of discrete points in time with a value
attached to each of it. A continuous signal is a time-dependent value. FRP systems
provide means to construct new signals from existing ones in purely declarative
ways. Especially, they support switching, that is, the creation of signals whose
behaviors switch to the behaviors of arbitrary other signals.

There are two principal approaches to implement FRP:

Push-based implementations react to external events by updating their internal
state and influencing the environment.

Pull-based implementations regularly poll interesting parts of the environment’s
state and modify their internal state and the environment accordingly.

1Brandenburgische Technische Universität Cottbus, Lehrstuhl Programmiersprachen
und Compilerbau, Ewald-Haase-Straße 12/13, 03044 Cottbus, Germany;
jeltsch@informatik.tu-cottbus.de

XIV–1

XIV–2 CHAPTER 14. IMPROVING PUSH-BASED FRP

Typically, push-based implementations recalculate only those parts of the internal
state and the environment which need updating. This is an advantage over pull-
based approaches which always recalculate everything.

However, previous push-based systems fell short of providing the declara-
tiveness and flexibility pull-based systems offer. A common problem is missing
treatment of simultaneity. When discrete signals are combined, values belong-
ing to the same time are not identified as simultaneously occuring. This can re-
sult in multiple reactions of the system instead of one large reaction which can
reduce performance and introduce inconsistent intermediate states. In addition,
most push-based FRP systems do not allow declarative descriptions of feedbacks.
Feedbacks are dependencies of a subsystem’s input on its own output.

In this paper we attack these two problems. We discuss an FRP foundation
which is essentially a data flow system. This means that, in contrast to a full FRP
system, it lacks support for continous signals and switching. We introduce our
system by example and give a discrete signal semantics in section 14.2. After-
wards we present a push-based implementation of our approach. We make thus
the following contributions:

• In section 14.3, we implement a framework for describing systems of reac-
tive components communicating via signals. Our implementation accumulates
parts of a system’s initialization action for later execution. This allows declar-
ative descriptions of feedbacks under certain conditions which we identify.

• In section 14.4, we present an implementation of discrete signals that includes
a merge operation which combines simultaneously occuring values.

• After showing a way to memoize the values of a discrete signal in section 14.5,
we show that this approach destroys the prerequisites for feedbacks. In sec-
tion 14.6, we introduce lax arrows. Lax arrows provide a way to reorder parts
of an arrow value in order to remove divergence for certain arrow feedbacks.
We use lax arrows to make feedbacks possible in the presence of memoization.

Finally, we discuss related work in section 14.7, and give a conclusion and an out-
look on further work in section 14.8 as well as acknowledgments in section 14.9.

All code presented in this paper is written in Haskell. Our concepts have been
implemented in the Grapefruit library [9] and the lax package [10].

14.2 A SURVEY OF OUR DATA FLOW SYSTEM

Discrete signals can describe sequences of events, each of them occuring at a
specific time and being parametrized by a certain value (for example, a key code
in the case of key press events). They can also be composed to form new signals.
A discrete signal is a value of type DSignal val for some type val. The internal
structure of discrete signals is designed such that it aids a push-based execution of
reactive systems. It cannot be accessed directly by the application programmer.
However, we define the meaning of a signal to be a Haskell value which directly
reflects the intuition behind the signal.

14.2. A SURVEY OF OUR DATA FLOW SYSTEM XIV–3

We define times to be non-negative real numbers whereas zero is the time
where the reactive system starts. The type Time covers all strictly positive reals.2

If dSignal :: DSignal val for some type val then JdSignalK :: [(Time,val)] is the
meaning of dSignal. The elements of the meaning are called occurences. We
say that the value val occurs at time time in the signal dSignal if (time,val) ∈
JdSignalK. The fact that 0 is not a value of Time makes it impossible for a value
to occur at the start of the reactive system.

The meaning of each signal dSignal fulfilles the condition that for every time ::
Time, the expression

all (>time) (tail (dropWhile (<time) (map fst JdSignalK)))

is equivalent to True. Note that this restriction implies the following:

• The times of the occurences are strictly ascending.

• For every time time there are only finitely many occurences with a time less
than time.

• ⊥ can only occur as part of the value components.

The second and third point hold because otherwise the above expression would
be equivalent to ⊥ instead of True.

Interaction with the environment is described by circuits. A circuit has an
input and an output, both of which are typically tuples of discrete signals.3 A
circuit may produce occurences in its output and change the outside world in
response to occurences in its input and external events. A circuit with input type i
and output type o is a value of type Circuit i o. Circuit is an instance of Arrow and
ArrowLoop [11] which allows complex circuits to be composed out of simpler
ones. Arrow syntax [11] is typically used for this.

In the following, we show signals and circuits in action using a simple GUI ap-
plication. During our walk through this example, we introduce several operations
on signals and state their semantics. Our example application displays the current
time in the format HH:MM. Beside the displayed time are two buttons for modi-
fying the time, an hour incrementing button to the left and a minute incrementing
button to the right. The source code of the application is shown in figure 14.1.

clockApp is a circuit based on the predefined circuit constructing functions
minutePulse, button and label whose type signatures are given in figure 14.2.
When clockApp is run, an instance of this circuit is created. This consists of
instances of its subcircuits. A minutePulse instance outputs a signal in which
the value () occurs every minute. An instance of button initCap denotes a button
which will show up as part of a GUI. This button initially has the caption initCap.
Everytime a value newCap occurs in the input, the button’s caption changes to
newCap. The value () occurs in the output whenever the user presses the button.

2We disregard the fact that the type of real numbers is actually not implementable.
3Hereby we consider () to be the 0-tuple and identify discrete signals with their

corresponding 1-tuples.

XIV–4 CHAPTER 14. IMPROVING PUSH-BASED FRP

clockApp :: Circuit () ()
clockApp = proc ()→ do

rec let
hPulse = filter (λm→ m ‘mod‘ 60≡ 0) (count mPulse)
update = merge (count (hPulse ‘merge‘ hPress))

(count (mPulse ‘merge‘ mPress))
timeUpd = scan nextTime (0,0) update

mPulse← minutePulse −[()
hPress ← button "H" −[empty
() ← label "00:00"−[fmap timeStr timeUpd
mPress← button "M" −[empty

returnA−[()
count :: DSignal val→ DSignal Int
count = scan (λnum → succ num) 0
nextTime :: (Int, Int)→MergeVal Int Int→ (Int, Int)
nextTime (,oldM) (First newH) = (newH,oldM)
nextTime (oldH,) (Second newM) = (oldH,newM)
nextTime (,) (Both newH newM) = (newH,newM)
timeStr :: (Int, Int)→ String
timeStr (h,m) = twoDigits (h ‘mod‘ 24)++":"++ twoDigits (m ‘mod‘ 60)
twoDigits :: Int→ String
twoDigits n = reverse (take 2 (reverse (’0’ : show n)))

FIGURE 14.1. Source code of the clock application

An instance of label initText denotes a text label. Setting the label’s text is handled
analoguously to setting a button’s caption. The label in our example is used to
display the time.

The order of button and label circuits in the application circuit determines the
order of the buttons and labels on the screen. Since the time shown by the label
depends on the minute incrementing button, we have to use feedback as provided
by ArrowLoop. This is done using rec. As a side effect, we are able to put all
local variable definitions into a single let block at the beginning.

The example code uses several operations on discrete signals whose type dec-
larations and semantics are shown in figure 14.3. Because it is impossible in

minutePulse :: Circuit () (DSignal ())
button :: String→ Circuit (DSignal String) (DSignal ())
label :: String→ Circuit (DSignal String) ()

FIGURE 14.2. Type signatures of circuit constructing functions

14.2. A SURVEY OF OUR DATA FLOW SYSTEM XIV–5

empty :: DSignal val
JemptyKtime = []
filter :: (val→ Bool)→ DSignal val→ DSignal val
Jfilter prd dSignalKtime = Prelude.filter (prd ◦ snd) JdSignalKtime

fmap :: (val→ val′)→ DSignal val→ DSignal val′

Jfmap fun dSignalKtime = onVals (fmap fun) JdSignalKtime

scan :: (val′→ val→ val′)→ val′→ DSignal val→ DSignal val′

Jscan acc init dSignalKtime = onVals (tail◦ scanl acc init) JdSignalKtime

onVals :: ([val]→ [val′])→ [(Time,val)]→ [(Time,val′)]
onVals valsFun occs = zip (map fst occs) (valsFun (map snd occs))
data MergeVal val1 val2 = First val1 | Second val2 | Both val1 val2
merge :: DSignal val1→ DSignal val2→ DSignal (MergeVal val1 val2)
Jmerge dSignal1 dSignal2Ktime = occsMerge JdSignal1Ktime JdSignal2Ktime

occsMerge :: [(Time,val1)]→ [(Time,val2)]→ [(Time,MergeVal val1 val2)]
occsMerge [] occs2 = occs2
occsMerge occs1 [] = occs1
occsMerge occs1 occs2 = let

(headTime1,headVal1) = head occs1

(headTime2,headVal2) = head occs2

in case compare headTime1 headTime2 of
LT → (headTime1,First headVal1) :

occsMerge (tail occs1) occs2
EQ→ (headTime1,Both headVal1 headVal2) :

occsMerge (tail occs1) (tail occs2)
GT→ (headTime2,Second headVal2) :

occsMerge occs1 (tail occs2)

FIGURE 14.3. Type signatures and semantics of basic discrete signal functions

general to state the meaning of a filter result as a Haskell expression, we de-
fine meanings indirectly through bound meanings. For any dSignal :: DSignal
and time :: Time, the bound meaning JdSignalKtime is equivalent to takeWhile ((6
time)◦ fst) JdSignalK.

empty denotes a signal without any occurences. It is used to state that the
button captions never change. fmap applies a function to all occuring values. The
helper function count counts the occurences in a given signal. It uses the scan
function which accumulates occurence values and has similarities with the scanl
function from the prelude. scan is also used to generate a signal of times from
the update signal which describes time changes. filter4 drops occurences whose

4This function is different from the prelude function of the same name and can be
distinguished from the prelude function because it belongs to a different module.

XIV–6 CHAPTER 14. IMPROVING PUSH-BASED FRP

values do not fulfill a given predicate. This is used in the definition of hPulse to
get a signal which has an occurence every hour.

The most important function is merge. merge aggregates the occurences of
two signals. Thereby, it combines occurences with equal time. Different external
events are always considered to happen at different times. Therefore, the merges
of pulse and press signals in the definition of update will not combine a pulse
with a press. On the other hand, the outer merge of the update definition will
combine each hour update with the corresponding minute update. If it would not,
there would be two changes of the label on every full hour. One would change
the hour digits and one the minute digits. Such behavior means a performance
loss which is not critical in this case but becomes significant in situations where
arbitrarily many signals are merged. Moreover, there would be an inconsistent
intermediate state. Depending on the order of updates, there would be transitions
like 07:59→ 08:59→ 08:00 or 07:59→ 07:00→ 08:00. Such behavior can be-
come cruical if signal occurences do not just affect a display but control some
safety-critical device. Note that our discrete signal semantics do not even allow
multiple occurences at the same time in the same signal.

Being a pure data flow system, our system lacks a switch function. Such
a function would have type DSignal val→ DSignal (DSignal val)→ DSignal val
and produce a signal which initially behaves like the first argument and switches to
the behavior of any signal occuring in the second argument whenever a occurence
takes place there.

14.3 IMPLEMENTING CIRCUITS

The key idea of our push-based FRP implementation is that the task of actually
running the system is left completely to event handlers. Initializing the system,
including registering the event handlers, is all which has to be done in the first
place. Control is then given to an event loop which lets the event handlers do their
job. This leads us to an implementation of circuits where a circuit is just an I/O
action which does the necessary initialization work:

newtype Circuit i o = Circuit (Kleisli IO i o) deriving (Arrow)

Note that we use GHC’s generalized newtype deriving mechanism to carry the
Arrow instance of Kleisli IO over to Circuit.

Since initialization done in the beginning might give rise to necessary final-
ization at the end, we allow the initialization action to output a finalization action
in addition to the ordinary output. We use the WriterArrow transformer [12] for
this:

newtype Circuit i o = Circuit (WriterArrow (IO :$ ()) (Kleisli IO) i o)
deriving (Arrow)

The :$ type operator denotes type application and is taken from the TypeCompose
package [5]. Using IO :$ () instead of IO () gives us a Monoid instance for free

14.4. IMPLEMENTING DISCRETE SIGNALS XIV–7

where mempty means no finalization and mappend means sequencing of finaliza-
tions. Thus, the finalization action of a circuit is automatically composed from
the finalization actions of its parts.

The above implementation has a problem. It is not possible to provide a sen-
sible ArrowLoop instance for Circuit. This can be demonstrated with the clock
example. The input of the clock depends on the signal mPress. Event handler
registration for the clock would need to know this signal in order to register a
handler for reacting on presses of the M button. However, since this button would
not have been constructed yet, this signal would not yet be known.

We solve this problem by only doing things like GUI widget creation in the
first place and deferring event handler registration to the time when every other
initialization has been done. Instead of writing a finalization action, the writer
arrow now writes an action which registers the event handlers and returns the
corresponding finalization action. This action is called a setup and has the type
IO :$ IO :$ (). Again, we get a sensible Monoid instance. mempty means no regis-
tration and no finalization while mappend denotes sequencing of registration and
finalization actions. The definition of Circuit becomes the following:

newtype Circuit i o = Circuit (WriterArrow Setup (Kleisli IO) i o)
deriving (Arrow,ArrowLoop)

type Setup = IO :$ IO :$ ()

With this solution, the clock builds a setup which depends on the yet unknown
mPress signal which is no problem because of lazy evaluation. When the regis-
tration is performed, all subcircuits have been created and therefore all subcircuit
outputs are known. In general, feedbacks work as long as I/O actions which use
a circuit’s input are not needed to compute the circuit’s output. However, if they
are needed, they cannot be put into the setup because the setup cannot contribute
to a circuit’s output. We will see an example of this situation in section 14.5 and
show that the above implementation has a shortcoming here. Section 14.6 will
show how to remove this shortcoming.

14.4 IMPLEMENTING DISCRETE SIGNALS

Certain discrete signals describe sequences of external events whereby the oc-
curence values are the event parameters. For example, the output of a minutePulse
instance describes a sequence of minute change events, and the output of a button
instance describes the sequence of press events of the respective button. Event
parameters are always () in these cases. A discrete signal which directly mirrors
an event sequence is provided by a discrete source. Each instance of minutePulse
and button covers a discrete source while label instances cover none. A signal
depends on a source if it is the signal provided by this source or if it is formed
from a signal which depends on this source by application of a signal function.

A discrete sink consumes a discrete signal and reacts on occurences in it. Each
button and label instance contains a discrete sink which changes the button’s cap-
tion or the label’s text, respectively.

XIV–8 CHAPTER 14. IMPROVING PUSH-BASED FRP

source cell

sink 1

sink n

writes

notifies

notifies

.

.

.

FIGURE 14.4. Event handling

An occurence in a discrete signal always originates from an external event.
The reason is that all signal functions create only occurences with times which
have been taken from the occurences of existing signals. Signal functions may
transform and combine occurence values, and drop occurences but they never
“invent” completely new occurences. So a sink has only to react to external events
which are made available through sources. The aim of the internal structure of
DSignal values is to make the communication between sources and sinks possible.

Figure 14.4 shows what happens in response to an event. Each source has a
mutable variable attached to it. This is called a cell and is created during circuit
initialization. Normally, the cell contains ⊥. Everytime an event occurs, the
event’s parameter is stored in the cell. Afterwards, all sinks which might have
to react to the event are notified of the event occurence. They read the event
parameter from the cell and determine whether the event occurence leads to an
occurence in their input signal. If this is the case, they calculate the occurence’s
value and react to the occurence. Finally, the cell’s content is reset to ⊥.

We introduce a type DSource for discrete sources:

data DSource = DSource Unique Notifier
type Notifier = IO ()→ Setup

Each source consists of a unique identifier and a notifier. Source IDs are generated
during circuit initialization via newUnique. There are Eq and Ord instances of
DSource which define equivalence and ordering of sources in terms of equivalence
and ordering of their IDs. These instances are needed since discrete sources are
used as keys in maps, as we will see soon. Notifiers are functions which map
event handlers to setups. The setup for a given event handler registers this handler
at the source so that it gets called on every event of this source.

The central part of a signal’s internal structure is the generator map. This
maps all sources, the signal depends on, to generators. A generator is an I/O
action which outputs Nothing when an event of the corresponding source does not
lead to an occurence in the signal, and Just val if it leads to an occurence of value
val. The generator reads the source’s cell in order to determine the generator’s
result. Since the scan function allows occurence values to depend on the signal’s

14.5. MEMOIZATION XIV–9

history, a generator may receive references to mutable variables as its input. These
mutable variables store values accumulated by scan. The references pointing to
them are called locals and are provided to the generator in form of a nested tuple.
The type definitions for generator maps and generators are as follows:

type GenMap locals val = Map DSource (Gen locals val)
type Gen locals val = locals→ IO (Maybe val)

A discrete signal consists of an I/O action which creates any mutable variables
for holding accumulated values, and of a generator map:

data DSignal val = ∀locals.DSignal (IO locals) (GenMap locals val)

The action for creating mutable state is run once by each sink which consumes the
signal. Its result is used together with the generators to form the event handlers
which are registered at the respective sources afterwards.

Using this definition of DSignal, all functions introduced in section 14.2 can
be implemented. We present the implementations of filter and merge. They are
shown in figure 14.5. We use the fact that Map is a functor and that (→) locals
and IO are functors and monads for pushing function applications inside gener-
ators and generator maps via fmap and liftM2. merge transforms its arguments’
generator maps into prepared maps. These already work with the result’s locals
and extract the part, they are interested in, via fst or snd, respectively. In addition,
they apply First or Second, respectively, to the occurence values of the argument
signals. When forming the result signal’s generator map, generators belonging to
the same source are combined via combGen. This makes sure that simultaneous
occurences are combined.

14.5 MEMOIZATION

Consider two different sinks whose signals are derived from a common signal by
signal function applications. The locals creation action of the common signal is
contained by the locals creation actions of both sinks’ signals. The analogue holds
for the generators of the common signal. Locals creation of the common signal
is therefore done for every sink instead of just once, resulting in an extra time
and possibly space cost. A further time penalty arises from the common signal’s
generators being called for every sink.

To solve these problems, we introducing the memo circuit. memo has type
Circuit (DSignal val) (DSignal val) and is denotationally equivalent to the identity
arrow pure id. In contrast to pure id, the output signal can be used multiple times
without imposing the time and space overhead discussed above.

Event handling in the presence of memoization is depicted in figure 14.6. An
instance of memo for a signal of type DSignal val covers a mutable variable of
type Maybe (Maybe val) which is called a box. Normally, the content of the box
is Nothing which means that there is no information concerning occurences in
the signal. During event handling for any of the signal’s sources, the content is

XIV–10 CHAPTER 14. IMPROVING PUSH-BASED FRP

filter prd (DSignal newLocals genMap) = DSignal newLocals genMap′ where
genMap′ = (fmap◦ fmap◦ fmap) outputConv genMap
outputConv Nothing = Nothing
outputConv (Just val) = if prd val then Just val else Nothing

merge (DSignal newLocals1 genMap1)
(DSignal newLocals2 genMap2) = DSignal newLocals′ genMap′ where

newLocals′ = liftM2 (,) newLocals1 newLocals2

genMap′ = unionWith combGen prepGenMap1 prepGenMap2

combGen = (liftM2◦ liftM2) combVal
combVal maybe1 maybe2 = case catMaybes [maybe1,maybe2] of

[] → Nothing
[mergeVal] → Just mergeVal
[First val1,Second val2]→ Just $

Both val1 val2
prepGenMap1 = fmap ((◦fst)◦ (fmap◦ fmap◦ fmap) First)

genMap1

prepGenMap2 = fmap ((◦snd)◦ (fmap◦ fmap◦ fmap) Second)
genMap2

FIGURE 14.5. Implementation of the filter and the merge function

changed to Just Nothing if there is no occurence in the signal, or to Just (Just val)
if the value val occurs. Every generator of the memo instance’s output checks the
content of the box and changes it if the box still contains Nothing. It then uses the
content of the box to produce its output.

After all respective sinks have reacted to an event occurence, the content of
the box has to be reset to Nothing. The memo instance is responsible for doing
that. Therefore, it has to be notified after event handling is complete. We extend
the DSource type with a second notifier. Handlers registered via this notifier are
called after all handlers registered with the first notifier have been executed.

In order to change the content of the box, the generator of the output signal
calls the respective generator of the input signal. The locals argument used by this
call is created by the memo instance during initialization. So in order to produce
the output signal, the locals creation action of the input signal has to be executed.
This means that this execution cannot be deferred by putting it into the setup but
has to be performed during the first intialization stage. So at this time, the locals
creation action of the input has to be already known. This is problematic if the
memoized signal depends on a source which is situated after the memo instance.

Signals which correspond to a certain source use return () for locals creation,
independently of any I/O outputs. Therefore, locals creation actions of signals
can be calculated purely functionally and could therefore be known early enough.
Nevertheless, the output of an I/O action is completely unknown until the action

14.6. GETTING LAZY VIA RELAXING XIV–11

source cell memo box

sink 1

sink n

writes

notifies

notifies

updates

updates

.

.

.

FIGURE 14.6. Event handling with memoization

has been executed completely. To illustrate this, take a look at the I/O Kleisli
arrow

loop (first get ≫ pure (uncurry (++)) ≫ put ≫ pure (const ((),".")))

where get = Kleisli $ const getLine and put = Kleisli $ putStrLn. Only after the
last pure arrow, it is known that the output of loop’s argument is ((),"."). So put
will work with a feedback of ⊥, not ".", and therefore fail.

So it is impossible to memoize a signal if this signal is derived from a sig-
nal which is fed back via loop. We will solve this problem in the next section.
The idea is to automatically move all pure computations to the beginning of the
initialization action. We develop a general arrow transformer to achieve this.

14.6 GETTING LAZY VIA RELAXING

We introduce a type LaxArrow of kind (∗ → ∗ → ∗)→ (∗ → ∗ → ∗). For every
Arrow instance base, LaxArrow base is an instance of Arrow and ArrowLoop. In
addition, there exist the following functions:

impure :: (ArrowLoop base)⇒ base i o → LaxArrow base i o
runLax :: (Arrow base) ⇒ LaxArrow base i o→ base i o

Applying impure to a base arrow value results in a so-called impure particle. The
Arrow and ArrowLoop methods of LaxArrow base can be used to build further
lax arrow values from impure particles. Note that these methods add only pure
computations.

Now, the idea is to perform all these pure computations at the beginning.
runLax achieves this by generating a base arrow value starting with a pure ar-
row value, called the converter. The converter receives the outputs of all impure
particles and the input of the complete arrow value as its input. It produces the
inputs of the impure particles as well as the output of the whole arrow value. Fol-
lowing the converter there are the base arrow values which were used to construct

XIV–12 CHAPTER 14. IMPROVING PUSH-BASED FRP

impureO1

impureOn

i

converter

impureI1

impureIn

o

impure 1

impure n

. . .

.

.

.
.
.
.

FIGURE 14.7. Structure of runLax results

the impure particles. Their results are immediately fed back into the converter.
Figure 14.7 shows the structure of runLax results graphically.

The feedback example from the last section can now made working by replac-
ing get and put with impure get and impure put, respectively, and applying runLax
to the whole expression. The result is equivalent to

loop (loop (pure conv ≫ second get) ≫ second put)

where conv is defined as follows:5

conv∼(∼(i,putO),getO) = (((),getO++"."), i)

The "." now appears directly in the input of put as generated by the converter.
This is because "." is fed back inside the converter. This feedback is not visible
in the above definition of conv because this definition is already in a simplified
form. Further note that put does not receive the result of get directly but only via
feedback and through the converter. It is important that get’s output is fed back
immediately after get because otherwise it would be available too late.

The type definition of LaxArrow is given in figure 14.8. Internally, a LaxArrow
value consist of the converter function and the base generator. The base generator
is a function which, given the converter as its argument, constructs the complete
arrow value yielded by runLax. However, the base generator can also be applied to
non-pure arrow values and to arrow values which use different types in place of the
input and output types. This generalization is necessary for the implementation
of (≫).

Using this definition, the implementation of runLax is straightforward. The
definitions of the other lax arrow functions are quite complicated in part because
of necessary tuple restructuring. We only give the general ideas here, for the exact
definitions, the reader is referred to the source code of the lax package [10]:

5Note that conv is not exactly the converter function because the input and output
tuples of the converter have a different structure than the arguments and results of conv.
We have chosen this definition of conv to make the presentation a bit simpler.

14.7. RELATED WORK XIV–13

data LaxArrow base i o = ∀impureI impureO.
LaxArrow ((impureO, i)→ (impureI,o))

(BaseGen base impureI impureO)
type BaseGen base impureI impureO = ∀i′ o′.

base (impureO, i′) (impureI,o′)→
base i′ o′

FIGURE 14.8. Implementation of the LaxArrow type

• Results of impure have a base generator which adds a single cycle containing
the argument of impure. The converter function does only tuple restructuring.

• The converter function of a pure result applies pure’s argument to the input.
The base generator does only tuple restructuring.

• The base generator of a (≫) result is basically the composition of the argu-
ments’ base generators. The converter function is responsible for feeding the
output of the first arrow to the second arrow.

• first and loop do not touch the base generator. They basically apply first or
loop, respectively, to the converter function.

We now obtain an improved implementation of Circuit by replacing Kleisli IO
with LaxArrow (Kleisli IO). Using this definition, memo instances are fully func-
tional also in the presence of feedbacks.

14.7 RELATED WORK

The first push-based FRP implementation was developed for the Haskell GUI li-
brary FranTk [13, 14]. Alas, FranTk’s merge function does not detect simultane-
ous occurences and therefore produces multiple occurences instead of combined
occurences. Instead of a circuit arrow, FranTk uses a GUI monad which does not
support feedbacks via a MonadFix instance. Feedbacks are implemented using
so-called wires and listeners which leads to a less declarative style.

FrTime [3, 2] is a push-based FRP implementation in Scheme. FrTime runs an
event loop in a separate thread. This makes it possible to incrementally develop
and test reactive programs in the interactive DrScheme environment. There is a
merge function for discrete signals which does not combine simultaneously occur-
ing values. On the other hand, continuous signals in FrTime respect simultaneity.
Feedbacks can be implemented declaratively using letrec.

Frappé [4] is an FRP library written in Java. It implements discrete and con-
tinuous signals as JavaBeans. Signals notify dependent signals about value oc-
curences and value changes by calling listener methods. This has the consequence
that simultaneity cannot be detected as multiple occurences at the same time are
handled by independent method invocations. Feedbacks can be achieved only

XIV–14 CHAPTER 14. IMPROVING PUSH-BASED FRP

imperatively. First, a partially-defined signal is constructed. The missing infor-
mation is provided later when necessary signals are known.

Fudgets [1] is a Haskell GUI library. Its central concept is the fudget which is
similar to a circuit with a single discrete input signal and a single discrete output
signal. Fudgets are implemented as stream transformers using a continuation-
passing style. While feedbacks are possible, simultaneously occuring values are
not combined. Handling of events and modifying the environment needs time
proportional to the depth of the respective fudget in the fudget hierarchy.

The Haskell library Yampa [8] is a popular example of a pull-based approach
to FRP. Yampa represents discrete signals as continous signals over Maybe types6

where applications of Just represent occurences while Nothing stands for the ab-
sence of occurences. The downside of this approach is that Yampa cannot enforce
that values occur at discrete times. Due to the pull-based implementation, the time
for updating the system state grows linearly with the system size. On the other
hand, Yampa supports recursive signal definitions which are not possible with our
approach. Feedbacks and simultaneity are no problems in Yampa.

The declarative data flow languages Signal [6] and Lustre [7] are taylored to
the concepts we dealt with in this paper. Like Yampa, they allow recursive signal
definitions. The compiler even checks that such definitions do not lead to cyclic
value dependencies. Furthermore, certain properties of occurence times can be
checked statically. Simultaneous occurences are identified and handled corre-
spondingly. In Lustre, time and space leaks are prevented and the adherence to
given time and space constraints can be checked. Compilation of Lustre programs
generates efficient code by using finite automata as an intermediate representation.

14.8 CONCLUSIONS AND FURTHER WORK

We have presented a push-based implementation of a data flow library. Our sys-
tem allows for declarative descriptions of reactive systems, including system with
feedbacks. To make feedbacks work, we employed a writer arrow for delaying
parts of the system initialization. We developed lax arrows to enable feedbacks in
combination with memoization. With lax arrows, parts of an arrow value are re-
arranged so that pure computations are performed first which makes their outputs
available to all impure computations. Our implementation also provides a merge
function for discrete signals which combines simultaneously occuring values in-
stead of generating multiple occurences.

Ongoing research deals with extending our signal implementation to support
switching. Futhermore, we investigate implementation techniques for continu-
ous signals. In addition, we are working on support for circuits whose structure
changes over time, and for incrementally updating continuous signals. merge
could execute generators and locals creation actions of its argument signals con-
currently. It should be analyzed how this can help improving performance.

6Actually, Yampa uses a type Event which is isomorphic to Maybe.

14.9. ACKNOWLEDGMENTS XIV–15

14.9 ACKNOWLEDGMENTS

The author wishes to thank Matthias Reisner and Daniel Skoraszewsky as well as
the anonymous reviewers for their helpful comments on earlier versions of this
paper.

REFERENCES

[1] M. Carlsson and T. Hallgren. Fudgets – Purely Functional Processes with Applica-
tions to Graphical User Interfaces. PhD thesis, Department of Computing Science,
Chalmers University of Technology/Göteborg University, 1998.

[2] G. Cooper and S. Krishnamurthi. FrTime: Functional reactive programming in PLT
Scheme. Technical Report CS–03–20, Brown University, Providence, RI, Apr. 2004.

[3] G. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a call-by-value
language. In Programming Languages and Systems, volume 3924 of Lecture Notes
in Computer Science, pages 294–308. Springer, Berlin/Heidelberg, 2006.

[4] A. Courtney. Frappé: Functional reactive programming in Java. In Practical Aspects
of Declarative Languages, volume 1990 of Lecture Notes in Computer Science, pages
29–44. Springer, Berlin/Heidelberg, 2001.

[5] C. Elliott. TypeCompose-0.3 (Haskell package). http://hackage.haskell.
org/cgi-bin/hackage-scripts/package/TypeCompose-0.3, Dec.
2007.

[6] T. Gautier, P. L. Guernic, and L. Besnard. SIGNAL: A declarative language for syn-
chronous programming of real-time systems. In Functional Programming Languages
and Computer Architecture, volume 274 of Lecture Notes in Computer Science, pages
257–277. Springer, Berlin/Heidelberg, 1987.

[7] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow
programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, Sept.
1991.

[8] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots, and functional re-
active programming. In Advanced Functional Programming, volume 2638 of Lecture
Notes in Computer Science, pages 159–187. Springer, Berlin/Heidelberg, 2004.

[9] W. Jeltsch. The Grapefruit homepage. http://haskell.org/haskellwiki/
Grapefruit.

[10] W. Jeltsch. lax-0.0.0.1 (Haskell package). http://hackage.haskell.org/
cgi-bin/hackage-scripts/package/lax-0.0.0.1, Mar. 2008.

[11] R. Paterson. A new notation for arrows. ACM SIGPLAN Notices, 36(10):229–240,
Oct. 2001.

[12] R. Paterson. arrows-0.4 (Haskell package). http://hackage.haskell.org/
cgi-bin/hackage-scripts/package/arrows-0.4, Feb. 2008.

[13] M. Sage. FranTk – a declarative GUI language for Haskell. ACM SIGPLAN Notices,
35(9):106–117, Sept. 2000.

[14] M. Sage. Declarative Support for Prototyping Interactive Systems. PhD thesis, De-
partment of Computing Science, University of Glasgow, Mar. 2001.

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/TypeCompose-0.3
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/TypeCompose-0.3
http://haskell.org/haskellwiki/Grapefruit
http://haskell.org/haskellwiki/Grapefruit
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/lax-0.0.0.1
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/lax-0.0.0.1
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/arrows-0.4
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/arrows-0.4

	Improving Push-based FRP
	Introduction
	A Survey of Our Data Flow System
	Implementing Circuits
	Implementing Discrete Signals
	Memoization
	Getting Lazy via Relaxing
	Related Work
	Conclusions and Further Work
	Acknowledgments
	References

